名古屋市立大 4次関数と接線 積分 - 質問解決D.B.(データベース)

名古屋市立大 4次関数と接線 積分

問題文全文(内容文):
$f(x)=x^4-2x^2+x$

(1)
$f(x)$と2点で接する直線の方程式は?

(2)
$f(x)$と$(1)$の直線で囲まれた面積は?

出典:名古屋市立大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-2x^2+x$

(1)
$f(x)$と2点で接する直線の方程式は?

(2)
$f(x)$と$(1)$の直線で囲まれた面積は?

出典:名古屋市立大学 過去問
投稿日:2019.08.14

<関連動画>

【高校数学】 数Ⅱ-119 三角関数の合成②

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq x \lt 2π$のとき、次の方程式を解こう。

①$\sqrt{ 3 } \sin x-\cos x=\sqrt{ 3 } $

②$2(\sin x + \cos x) -\sqrt{ 6 }$
この動画を見る 

複素数 慈恵医大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\theta=\dfrac{2}{9}\pi$
$\alpha=\cos\theta+i\sin\theta$
$\beta=\alpha+\alpha^8$である.

(1)$\beta$は実数であることを示せ.
(2)$\beta$を解にもつ整数係数の3次方程式を求めよ.
(3)(2)の3次方程式は有理数解をもたないことを示せ.

2004慈恵医大過去問
この動画を見る 

いい問題(多分)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+bcd=10 \\
b+cda=10\\
c+dab=10 \\
d+abc=10 \\
\end{array}
\right.
\end{eqnarray}$

$(a,b,c,d)$の組を求めよ.
この動画を見る 

福田のわかった数学〜高校3年生理系080〜グラフを描こう(2)三角関数のグラフ

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(2)
$y=\cos2x-2\cos x  (0 \leqq x \leqq 2\pi)$
のグラフを描け。ただし凹凸は調べなくてよい。
この動画を見る 

福田の数学〜中央大学2023年理工学部第3問〜関数の変曲点と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $f(x)=\displaystyle\frac{1}{1+e^{-x}}$とし、曲線$y$=$f(x)$をCとする。以下の問いに答えよ。
(1)曲線Cの変曲点Pの座標を求めよ。
(2)曲線Cの点Pにおける接線$l$の方程式を求めよ。また、直線$l$と直線$y$=1の交点の$x$座標$a$を求めよ。
(3)$b$を(2)で求めた$a$より大きい実数とする。曲線Cと直線$y$=1, $x$=$a$, $x$=$b$で囲まれた部分の面積$S(b)$を求めよ。
(4)$\displaystyle\lim_{b \to \infty}S(b)$を求めよ。
この動画を見る 
PAGE TOP