重積分⑤【積分順序の変更(応用)】(高専数学 微積II,数検1級1次対応) - 質問解決D.B.(データベース)

重積分⑤【積分順序の変更(応用)】(高専数学 微積II,数検1級1次対応)

問題文全文(内容文):
(1)$\int_0^1 \int_y^1 sinx^2dxdy$
(2)$\int_0^{\sqrt3} \int_1^{\sqrt{4-x^2}} \frac{x}{\sqrt{x^2+y^2}} dydx$
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
(1)$\int_0^1 \int_y^1 sinx^2dxdy$
(2)$\int_0^{\sqrt3} \int_1^{\sqrt{4-x^2}} \frac{x}{\sqrt{x^2+y^2}} dydx$
投稿日:2020.10.29

<関連動画>

#岩手大学(2019) #極限 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{3x^2-1}{2x+1}\sin\displaystyle \frac{2}{x}$

出典:2019年岩手大学
この動画を見る 

大学入試問題#671「方針が見えやすい良問」 東京医科大学(2001)

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科大学#東京医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{\frac{3}{2}} \displaystyle \frac{x^2}{\sqrt{ 2x-x^2 }} dx$

出典:2001年東京医科大学 入試問題
この動画を見る 

素数であることの証明【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を2以上の整数とする。$3^n-2^n$が素数ならば$n$も素数であることを示せ。

京都大過去問
この動画を見る 

東北大 二次関数と接線 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$C_{1}:y-x^2$
$C_{2}:y=-x^2+2ax-a$

(1)
$C_{1}$と$C_{2}$が共有点をもたない$a$の範囲


(2)
(1)のとき、$C_{1}C_{2}$の両方に接する直線が2本あることを示せ


(3)
(2)の2直線の交点の描く図形を図表せよ

出典:2015年東北大学 過去問
この動画を見る 

東京大2022理系

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
数列{$a_n$}を次のように定める。
$a_1=1$ , $a_{n+1}={a_n}^2+1(n=1,2,3\cdots)$
(1)正の整数nが3の倍数のとき$a_n$は5の倍数となることを示せ。
(2)$a_n$が$a_k$の倍数となる必要十分条件をk,nを用いて示せ。(k,n:正の整数)
(3)$a_{2022}$と$(a_{8091})^2$の最大公約数を求めよ。

2022東京大学理系
この動画を見る 
PAGE TOP