数検準1級2次過去問(1番 指数対数の不等式) - 質問解決D.B.(データベース)

数検準1級2次過去問(1番 指数対数の不等式)

問題文全文(内容文):
1⃣
$2^xlog_2x+2^{x+2}-4log_2x-16 < 0$
をみたすxの値の範囲を求めよ。
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#対数関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣
$2^xlog_2x+2^{x+2}-4log_2x-16 < 0$
をみたすxの値の範囲を求めよ。
投稿日:2020.11.30

<関連動画>

整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x+4)^{12}$を$x^2+6x+12$で割った余りを求めよ.
この動画を見る 

福田の数学〜東北大学2023年理系第4問〜1の5乗根

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 実数a=$\frac{\sqrt5-1}{2}$に対して、整式f(x)=$x^2$-$ax$+1を考える。
(1)整式$x^4$+$x^3$+$x^2$+$x$+1 はf(x)で割り切れることを示せ。
(2)方程式f(x)=0の虚数解であって虚部が正のものを$\alpha$とする。$\alpha$を極形式で表せ。ただし、$r^5$=1を満たす実数rがr=1のみであることは、認めて使用してよい。
(3)設問(2)の虚数$\alpha$に対して、$\alpha^{2023}$+$\alpha^{-2023}$の値を求めよ。

2023東北大学理系過去問
この動画を見る 

福田のおもしろ数学303〜階乗のたくさんある分数の和

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \frac{1}{2! 17!} $$\displaystyle + \frac{1}{3! 16!} $$\displaystyle + \frac{1}{4! 15!}$$+ \cdots $$\displaystyle + \frac{1}{9! 10!} $$\displaystyle = \frac{N}{1! 18!}$ を満たす $N$ を求めよ。
この動画を見る 

2022北海道大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-$
$k+1 $
(1)$ f(k-1)$の値を求めよ.
(2)$ \vert k \vert \lt 2$のとき,不等式 $ f(n)\geqq 0$を解け.

2022北海道大過去問
この動画を見る 

特殊なBBB部分分数分解

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\dfrac{1^2}{1・3}+\dfrac{2^2}{3・5}+\dfrac{3^2}{5・7}+・・・・+\dfrac{50^2}{99・101}$
この動画を見る 
PAGE TOP