【中学から分かる!】正弦定理(2):三角比 特別講義(トッコー)~全国入試問題解法 - 質問解決D.B.(データベース)

【中学から分かる!】正弦定理(2):三角比 特別講義(トッコー)~全国入試問題解法

問題文全文(内容文):
$\triangle ABC$において,$a \sin A=b \sin B=c \sin C$ならばどんな三角形か.
単元: #数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\triangle ABC$において,$a \sin A=b \sin B=c \sin C$ならばどんな三角形か.
投稿日:2022.08.20

<関連動画>

福田の数学〜明治大学2022年全学部統一入試12AB第1問(4)〜角の二等分線と辺の長さの軽量

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(4)三角形$ABC$の$\angle A$の二等分線と辺$BC$との交点をDとする。
$AB=8,\ AC=3,\ AD=4$とするとき、

$BD:CD=\boxed{\ \ ソ\ \ }:\boxed{\ \ タ\ \ }$であり、
$BC=\frac{\boxed{\ \ チツ\ \ }\sqrt{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }}$である。

2022明治大学全統過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第1問〜三角形の内部にある外接している5つの円

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#方べきの定理と2つの円の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 図(※動画参照)のように三角形ABCの内部に半径1の円が5つ含まれている。4つの円は\\
辺BCに接しながら横一列に互いに接しながら並び、左端の円は辺ABに接し、右端の円は\\
辺ACに接している。また、もう一つの円は、辺ABと辺ACに接し、4つの円の右側の2つ\\
の円に接している。このとき\\
AB=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}BC   AC=\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC\\
BC=\frac{\boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }}}{\boxed{\ \ テト\ \ }}   (\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })\\
である。
\end{eqnarray}

2021慶應義塾大学環境情報学部過去問
この動画を見る 

【高校数学】  数Ⅰ-87  余弦定理

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
△ABCについて
①$a^2=$____
②$b^2=$____
③$c^2=$____
④$\cos A=$____
⑤$\cos B=$____
⑥$\cos C=$____
※図は動画内参照

◎△ABCにおいて、次のものを求めよう。
⑦$a=3,b=\sqrt{ 2 },C=45°$のとき $c$
⑧$b=7,c=5,B=60°$のとき$a$
この動画を見る 

福田の数学〜立教大学2023年経済学部第1問(3)〜三角形を解く

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)三角形ABCにおいてAB=AC=4, BC=6とする。AB上の点PがCP=5を満たすとき、AP=$\boxed{\ \ ウ\ \ }$である。
この動画を見る 

福田の数学〜東京大学2023年文系第4問〜四面体の体積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#図形と方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 半径1の球面上の相異なる4点A,B,C,Dが
AB=1, AC=BC, AD=BD, $\cos\angle ACB$=$\cos\angle ADB$=$\displaystyle\frac{4}{5}$
を満たしているとする。
(1)三角形ABCの面積を求めよ。
(2)四角形ABCDの体積を求めよ。

2023東京大学文系過去問
この動画を見る 
PAGE TOP