中学生も解ける?整数問題 - 質問解決D.B.(データベース)

中学生も解ける?整数問題

問題文全文(内容文):
$P=a^2-a+2ab+b^2-b$ (a,bは自然数)
Pが素数となるようなa,bをすべて求めよ。(鹿児島大学)
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$P=a^2-a+2ab+b^2-b$ (a,bは自然数)
Pが素数となるようなa,bをすべて求めよ。(鹿児島大学)
投稿日:2021.04.07

<関連動画>

19愛知県教員採用試験(数学:1-1,2番 整数問題)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣2x+5y=43$\cdots$※
(1)※をみたす自然数の組(x,y)
(2)※をみたしx-2yがx+3yで割り切れる整数の組(x,y)の個数
この動画を見る 

京大の整数問題!京大はこのパターンが大好き

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
pが素数ならばp^4 +14は素数でないことを示せ。
この動画を見る 

999C n が5の倍数になる最小のn

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
${}_{999} \mathrm{ C }_n$が$5$の倍数となる最小の$n$を求めよ.
この動画を見る 

北海道大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$を自然数とする.

(1)$\dfrac{3x}{x^2+2}$が自然数となる$x$を求めよ.
(2)$\dfrac{3x}{x^2+2}+\dfrac{1}{y}$が自然数となる$(x,y)$を求めよ.

2016北海道大過去問
この動画を見る 

等間隔で素数が出現!?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
5、11、17、23、29は、等間隔で並ぶ5つの整数がすべて素数。
では、等間隔で並ぶ 6つの整数すべてが素数となる組を1つ例示せよ。
この動画を見る 
PAGE TOP