福田のおもしろ数学081〜京大の珍問奇問〜分母の有理化 - 質問解決D.B.(データベース)

福田のおもしろ数学081〜京大の珍問奇問〜分母の有理化

問題文全文(内容文):
$\displaystyle\frac{55}{2\sqrt[3]{9}+\sqrt[3]{3}+5}$ を有理化せよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\frac{55}{2\sqrt[3]{9}+\sqrt[3]{3}+5}$ を有理化せよ。
投稿日:2024.03.15

<関連動画>

福田の数学〜上智大学2022年TEAP文系型第4問(1)〜必要十分条件と条件の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)実数の数列${a_n}$に関する以下の条件 $(P)$ を考える。
$(P) 「n\geqq N$ならば $a_n \leqq 4$」が成り立つ自然数Nが存在する
$(\textrm{i})$ 以下の選択肢から、(P) であるための必要十分条件をすべて選べ。
$(\textrm{ii})$ 以下の選択肢から、(P) であるための必要条件ではあるが十分条件ではないもの
をすべて選べ。
$(\textrm{iii})$ 以下の選択肢から、(P) の否定であるものをすべて選べ。
選択肢$(\textrm{a})$「$n\gt N$ ならば$a_n \leqq 4$」が成り立つ自然数Nが存在する
$(\textrm{b})$ 「$n \lt N$ ならば$an \leqq 4$」 が成り立つ自然数Nが存在する
$(\textrm{c})$ 「$n\geqq N$ならば$a_n\gt 4$」 が成り立つ自然数Nが存在する
$(\textrm{d}) a_n \gt 4$ を満たす自然数n が無限個存在する
$(\textrm{e}) a_n \leqq 4$ を満たす自然数nが無限個存在する
$(\textrm{f}) a_n \gt 4$ を満たす自然数nは存在しても有限個である
$(\textrm{g}) a_n \leqq 4$ を満たす自然数nは存在しても有限個である

2022上智大学文系過去問
この動画を見る 

九州大学 素数 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2015九州大学過去問題
(1)nが正の偶数のとき、$2^n-1$は3の倍数であることを示せ。
(2)nを自然数とする。$2^n+1$と$2^n-1$は互いに素であることを示せ。
(3)p,qは異なる素数とする。$2^{P-1}-1 = pq^2$を満たすp,qをすべて求めよ。
この動画を見る 

大阪大 整数(素数)問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'04大阪大学過去問題
p,q素数(p>2q)
$a_n=P^n-4(-q)^n$  n自然数
(1)$a_1$と$a_2$が1より大きい公約数mをもつならばm=3であることを示せ
(2)$a_n$が全て3の倍数であるようなp,qのうち積pqが最小となるものを求めよ。
この動画を見る 

大学入試問題#276 信州大学医学部後期 改 (2012) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: ますただ
問題文全文(内容文):
$0 \lt a \lt 1$
$\displaystyle \int_{0}^{\sqrt{ 1-a^2 }}x\ log(x^2+a^2)dx$

出典:2012年信州大学医学部後期 入試問題
この動画を見る 

積分区間は0→π/4です。大学入試問題#900「減点ポイント多い問題」 #横浜国立大学後期(2023)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$n$を正の整数とする。
関数$F(x)=\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{2e^x\cos t\sin t}{(\cos^2t+x^n\sin^2t)^2} dt$
について、次の問いに答えよ。
ただし、$x \gt 0$とする。
1.$F(x)$を求めよ。
2.$F(x)$が極値をもつ最小の$n$の値を求めよ。

出典:2023年横浜国立大学後期
この動画を見る 
PAGE TOP