【高校数学】 数Ⅰ-51 2次関数の決定③ - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-51  2次関数の決定③

問題文全文(内容文):
◎次の条件を満たす放物線の方程式を求めよう。

①放物線$y=2x^2-3x$を平行移動した曲線で、2点(1.-1)(2.0)を通る。
②放物線$y=x^2-3x+4$を平行移動した曲線で、点(2.4)を通り、頂点が 直線$y=2x+1$上にある。
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の条件を満たす放物線の方程式を求めよう。

①放物線$y=2x^2-3x$を平行移動した曲線で、2点(1.-1)(2.0)を通る。
②放物線$y=x^2-3x+4$を平行移動した曲線で、点(2.4)を通り、頂点が 直線$y=2x+1$上にある。
投稿日:2014.08.23

<関連動画>

【数Ⅰ】2次関数:aを正の定数とする。関数y=x²-2x(0≦x≦a)について、次の問いに答えよ。(1)最大値を求めよ。(2)最小値を求めよ。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の定数とする。
関数$y=x^2-2x(0\leqq x\leqq a)$について、次の問いに答えよ。
(1)最大値を求めよ。
(2)最小値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第1問〜三角形の内部にある外接している5つの円

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#方べきの定理と2つの円の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 図(※動画参照)のように三角形ABCの内部に半径1の円が5つ含まれている。4つの円は\\
辺BCに接しながら横一列に互いに接しながら並び、左端の円は辺ABに接し、右端の円は\\
辺ACに接している。また、もう一つの円は、辺ABと辺ACに接し、4つの円の右側の2つ\\
の円に接している。このとき\\
AB=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}BC   AC=\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC\\
BC=\frac{\boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }}}{\boxed{\ \ テト\ \ }}   (\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })\\
である。
\end{eqnarray}

2021慶應義塾大学環境情報学部過去問
この動画を見る 

愛媛大・三次関数 東海大 4次方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
愛媛大学過去問題
$f(x)=ax^3+3a^2x^2+1(a \neq 0)$
$2 \leqq x \leqq 4$における最小値がf(2)になるようなaの範囲

東海大学過去問題
次の4次方程式を解け
$x^4-2x^3-13x-2x+1=0$
この動画を見る 

【数Ⅰ】数と式:√(5+2√6)の2重根号を外す!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sqrt{(5+2\sqrt6)}$の2重根号を外しなさい
この動画を見る 

【数Ⅰ】図形と計量:三角比の表①30°45°60°から!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・sin30°, sin45°, sin60°の値を求めよ。
・cos30°, cos45°, cos60°の値を求めよ。
・tan30°, tan45°, tan60°の値を求めよ。
この動画を見る 
PAGE TOP