【高校数学】条件付き確率例題~これはできなヤバイ~ 2-8.5【数学A】 - 質問解決D.B.(データベース)

【高校数学】条件付き確率例題~これはできなヤバイ~ 2-8.5【数学A】

問題文全文(内容文):
1⃣
男子46人,女子54人に試験を行ったところ、男子の合格者は30人、
女子の合格者は36人であった。
この100人の中から1人を選ぶとき次の確率を求めよ。
(a) 選んだ1人が女子であったとき、その人が合格している確率
(b) 選んだ1人が不合格者であったとき、その人が男子である確率

-----------------

2⃣
ある試行における事象$A,B$について、$P(A \cap B)=0.4,P(A)=0.8,P(B)=0.5$のとき
$P_{A}(B) P_{B}(A)$を求めよ。

-----------------

3⃣
8本のくじの中に当たりが3本ある。引いたくじをもとに戻さないで
A、Bの2人がこの順に1本ずつ引くとき、次の確率を求めよ。
(a) Aが当たり、Bがはずれる確率
(b) 2人とも当たる確率
(c) Bが当たる確率
(d) 1人だけが当たる確率
チャプター:

00:00 はじまり

00:17 問題だよ

00:27 問題解説(1)

02:46 問題解説(2)

04:27 問題解説(3)

08:08 まとめ

08:48 まとめノート

単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
男子46人,女子54人に試験を行ったところ、男子の合格者は30人、
女子の合格者は36人であった。
この100人の中から1人を選ぶとき次の確率を求めよ。
(a) 選んだ1人が女子であったとき、その人が合格している確率
(b) 選んだ1人が不合格者であったとき、その人が男子である確率

-----------------

2⃣
ある試行における事象$A,B$について、$P(A \cap B)=0.4,P(A)=0.8,P(B)=0.5$のとき
$P_{A}(B) P_{B}(A)$を求めよ。

-----------------

3⃣
8本のくじの中に当たりが3本ある。引いたくじをもとに戻さないで
A、Bの2人がこの順に1本ずつ引くとき、次の確率を求めよ。
(a) Aが当たり、Bがはずれる確率
(b) 2人とも当たる確率
(c) Bが当たる確率
(d) 1人だけが当たる確率
投稿日:2020.08.10

<関連動画>

東大 確率ジャンケン

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3$人でじゃんけんをして$k$回目に$1$人の勝者が決まる確率を求めよ.
※負けた人は次以降参加しない.

1971東大過去問
この動画を見る 

福田の一夜漬け数学〜確率漸化式(1)〜京都大学の問題(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $A,B,C$の3人が色のついた札を1枚ずつ持っている。初めに$A,B,C$
の持っている札の色はそれぞれ赤、白、青である。$A$がサイコロを
投げて、3の倍数の目が出たら$A$は$B$と持っている札を交換し、
その他の目が出たら$A$は$C$と札を交換する。この試行を$n$回繰り返し
た後に赤い札を$A,B,C$が持っている確率をそれぞれ$a_n,b_n,c_n$とする。

(1)$n \geqq 2$のとき、$a_n,b_n,c_n$を$a_{n-1},b_{n-1},b_{n-1}$で表せ。
(2)$a_n$を求めよ。
この動画を見る 

福田の数学〜青山学院大学2023年理工学部第2問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 白石と黒石を手元にたくさん用意する。表が白色、裏が黒色の硬貨1枚を用いて、机の上で以下の操作を繰り返し行う。ただし、最初の操作は机の上に石が1個もない状態から始めるものとする。
操作:効果を投げ、出た色と異なる色の石が机の上にあればその中の1個を取り除き、なければ出た色と同じ色の石を手元から机の上に1個置く。
とくに、机の上に石が1個もなければ、次の回の操作では出た色と同じ色の石を手元から机の上に1個置く。
(1)3回目の操作後に机の上に石がちょうど3個ある確率は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
(2)6回目の操作後に机の上に石がちょうど2個ある確率は$\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}$であり、石が1個もない確率は$\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ クケ\ \ }}$である。
(3)6回目の操作後に机の上にある石が2個以下であったときに、8回目の操作後に机の上にある石も2個以下である条件付き確率は$\frac{\boxed{\ \ コサ\ \ }}{\boxed{\ \ シス\ \ }}$である。
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第2問〜デコボコ数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}$10進法で表したときm桁$(m \gt 0)$である正の整数nの第i桁目$(1 \leqq i \leqq m)$を
$m_i$としたとき、$i\neq j$のとき$n_i\neq n_j$であり、かつ、次の$(\textrm{a})$または$(\textrm{b})$のいずれか
が成り立つとき、nを10進法m桁のデコボコ数と呼ぶことにする。
$(\textrm{a})1 \leqq i \lt m$であるiに対して、
iが奇数の時$n_i \lt n_{i+1}$となり、
iが偶数の時$n_i \gt n_{i+1}$となる。
$(\textrm{b})1 \leqq i \lt m$であるiに対して、$i$が奇数の時$n_i \gt n_{i+1}$となり、
$i$が偶数の時$n_i \lt n_{i+1}$となる。

例えば、361は$(\textrm{a})$を満たす10進法3桁のデコボコ数であり、$52409$は$(\textrm{b})$を
満たす10進法5桁のデコボコ数である。なお、4191は$(\textrm{a})$を満たすが「$i\neq j$のとき
$n_i\neq n_j$である」条件を満たさないため、10進法4桁のデコボコ数ではない。
(1)nが10進法2桁の数$(10 \leqq n \leqq 99)$の場合、
$n_1\neq n_2$であれば$(\textrm{a})$または$(\textrm{b})$を
満たすため、10進法2桁のデコボコ数は$\boxed{\ \ アイ\ \ }$個ある。
(2)nが10進法3桁の数$(100 \leqq n \leqq 999)$の場合、$(\textrm{a})$を満たすデコボコ数は
$\boxed{\ \ ウエオ\ \ }$個、$(\textrm{b})$を満たすデコボコ数は$\boxed{\ \ カキク\ \ }$個あるため、
10進法3桁のデコボコ数は合計$\boxed{\ \ ケコサ\ \ }$個ある。
(3)nが10進法4桁の数$(1000 \leqq n \leqq 9999)$の場合、$(\textrm{a})$を満たすデコボコ数は
$\boxed{\ \ シスセソ\ \ }$個、$(\textrm{b})$を満たすデコボコ数は$\boxed{\ \ タチツテ\ \ }$個あるため、
10進法4桁のデコボコ数は合計$\boxed{\ \ トナニヌ\ \ }$個ある。また10進法4桁のデコボコ数
の中で最も大きなものは$\boxed{\ \ ネノハヒ\ \ }$、最も小さなものは$\boxed{\ \ フヘホマ\ \ }$である。

2022慶應義塾大学総合政策学部過去問
この動画を見る 

【高校数学】共通部分と和集合~⋂と⋃の記号のイメージ授けます~ 1-2【数学A】

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
共通部分と和集合の説明動画です
この動画を見る 
PAGE TOP