問題文全文(内容文):
2次方程式$(x+1)(x-1)+(x-1)(x-2)+(x-2)(x+1)=0$の2つの解をα、βとするとき、次の式の値を求めよ。
$\frac{1}{(α-2)(β-2)}+\frac{1}{(α-1)(β-1)}+\frac{1}{(α+1)(β+1)}$
解の公式を用いて、次の2次式を因数分解せよ。
(1)$x^2-xy-xz+2y-2$
(2)$2x^2-5xy+2y^2+x+y-1$
次の連立方程式を解け。
(1)$x+y=3$
$x+y+xy=-7$
(2)$x^2+y^2=13$
$xy=6$
2次方程式$(x+1)(x-1)+(x-1)(x-2)+(x-2)(x+1)=0$の2つの解をα、βとするとき、次の式の値を求めよ。
$\frac{1}{(α-2)(β-2)}+\frac{1}{(α-1)(β-1)}+\frac{1}{(α+1)(β+1)}$
解の公式を用いて、次の2次式を因数分解せよ。
(1)$x^2-xy-xz+2y-2$
(2)$2x^2-5xy+2y^2+x+y-1$
次の連立方程式を解け。
(1)$x+y=3$
$x+y+xy=-7$
(2)$x^2+y^2=13$
$xy=6$
チャプター:
0:00 オープニング
0:04 1解説
4:56 2解説
11:43 3解説
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2次方程式$(x+1)(x-1)+(x-1)(x-2)+(x-2)(x+1)=0$の2つの解をα、βとするとき、次の式の値を求めよ。
$\frac{1}{(α-2)(β-2)}+\frac{1}{(α-1)(β-1)}+\frac{1}{(α+1)(β+1)}$
解の公式を用いて、次の2次式を因数分解せよ。
(1)$x^2-xy-xz+2y-2$
(2)$2x^2-5xy+2y^2+x+y-1$
次の連立方程式を解け。
(1)$x+y=3$
$x+y+xy=-7$
(2)$x^2+y^2=13$
$xy=6$
2次方程式$(x+1)(x-1)+(x-1)(x-2)+(x-2)(x+1)=0$の2つの解をα、βとするとき、次の式の値を求めよ。
$\frac{1}{(α-2)(β-2)}+\frac{1}{(α-1)(β-1)}+\frac{1}{(α+1)(β+1)}$
解の公式を用いて、次の2次式を因数分解せよ。
(1)$x^2-xy-xz+2y-2$
(2)$2x^2-5xy+2y^2+x+y-1$
次の連立方程式を解け。
(1)$x+y=3$
$x+y+xy=-7$
(2)$x^2+y^2=13$
$xy=6$
投稿日:2025.02.18





