福田の一夜漬け数学〜図形と方程式〜軌跡(3)媒介変数表示の点、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜軌跡(3)媒介変数表示の点、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 次の媒介変数表示で表された点$P(x,y)$の軌跡を求めよ。

(1)$x=\displaystyle \frac{\cos\theta+\sin\theta}{\sqrt2},$ $y=\displaystyle \frac{\cos\theta-\sin\theta}{\sqrt2}$ ($\theta$は任意の実数)

(2)$x=\displaystyle \frac{1-t^2}{1+t^2},$ $y=\displaystyle \frac{2t}{1+t^2}$ ($t$は任意の実数)
単元: #数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の媒介変数表示で表された点$P(x,y)$の軌跡を求めよ。

(1)$x=\displaystyle \frac{\cos\theta+\sin\theta}{\sqrt2},$ $y=\displaystyle \frac{\cos\theta-\sin\theta}{\sqrt2}$ ($\theta$は任意の実数)

(2)$x=\displaystyle \frac{1-t^2}{1+t^2},$ $y=\displaystyle \frac{2t}{1+t^2}$ ($t$は任意の実数)
投稿日:2018.08.17

<関連動画>

福田のわかった数学〜高校3年生理系085〜グラフを描こう(7)媒介変数表示のグラフ

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(7)\\
\\
\left\{
\begin{array}{1}
x=t^2+1\\
y=2-t-t^2
\end{array}
\right.  (-2 \leqq t \leqq 1)\\
\\
のグラフを描け。
凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る 

東大 座標上の鋭角三角形

アイキャッチ画像
単元: #数A#図形の性質#平面上の曲線#三角形の辺の比(内分・外分・二等分線)#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は実数であり,$b\neq 0$である.
$O(0,0).P(1,0),Q(a,b)$

(1)$\triangle OPQ$が鋭角三角形になる$a,b$の条件を不等式で表せ.
(2)$m,n$整数,$a,b$は(1)の条件を満たすとき,$(m+na)^2-(m+na)+n^2b^2 \geqq 0$を示せ.

1998東大過去問
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第1問〜媒介変数表示で表された曲線の長さと接線の傾きと体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#浜松医科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 媒介変数t\ (t \geqq 0)に対して、x=\frac{4}{\sqrt3}t^{\frac{3}{2}},y=2tで表される曲線C上に\\
点P_1とP_2がある。原点から点P_1までの曲線の長さは\frac{28}{9}であり、点P_2における曲線C\\
の接線の傾きは\frac{1}{3}である。以下の問いに答えよ。\\
(1)点P_1の座標(x_1,y_1)を求めよ。\\
(2)点P_2の座標(x_2,y_2)を求めよ。\\
(3)曲線Cとy軸、および2直線y=y_1,y=y_2で囲まれた図形を、y軸の周りに1回転\\
してできる回転体を考える。この回転体の体積を求めよ。
\end{eqnarray}

2022浜松医科大学医学部過去問
この動画を見る 

福田の一夜漬け数学〜積分・面積と体積、媒介変数表示(1)〜受験編

アイキャッチ画像
単元: #平面上の曲線#積分とその応用#定積分#面積・体積・長さ・速度#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\theta-\sin\theta \\
y=1-\cos\theta
\end{array}
\right.
\end{eqnarray}(0 \leqq \theta \leqq 2\pi)$で表される曲線をCとする。

(1)Cとx軸で囲まれる部分の領域をDとする。Dの面積Sを求めよ。
(2)Dをx軸の周りに1回転してできる立体の体積Vを求めよ。

$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^2+1 \\
y=2-t-t^2
\end{array}
\right.
\end{eqnarray}(-2 \leqq t \leqq 1)$で表される曲線とx軸で囲まれた面積を求めよ。
この動画を見る 

【数Ⅲ】式と曲線:極方程式の直線のなす角

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #サクシード#サクシード数学Ⅲ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2直線
$r(\sqrt3\cos\theta+\sin\theta)=4$
$r(\sqrt3\cos\theta-\sin\theta)=2$
の交点の極座標を求めよ。またこの2直線のなす鋭角も求めよ。
(出典 数研出版サクシード数学Ⅲ)
この動画を見る 
PAGE TOP