【高校数学】 数Ⅱ-105 三角関数を含む関数の最大・最小① - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-105 三角関数を含む関数の最大・最小①

問題文全文(内容文):
◎次の関数の最大値と最小値、およびそのときの$\theta$の値を求めよう。

①$y=2\sin \theta -5(\displaystyle \frac{π}{3}\leqq\theta\leqq\displaystyle \frac{7}{6}π)$

②$y=\sin(\theta-\displaystyle \frac{π}{3})(0\leqq\theta\leqq\displaystyle \frac{2}{3}π)$

③$y=\cos (2\theta-\displaystyle \frac{π}{3})(\displaystyle \frac{π}{4}\leqq\theta\leqq\displaystyle \frac{π}{2})$

④$y=2\cos(2\theta-\displaystyle \frac{π}{6})(\displaystyle \frac{π}{6}\leqq\theta\leqq\displaystyle \frac{π}{3})$
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数の最大値と最小値、およびそのときの$\theta$の値を求めよう。

①$y=2\sin \theta -5(\displaystyle \frac{π}{3}\leqq\theta\leqq\displaystyle \frac{7}{6}π)$

②$y=\sin(\theta-\displaystyle \frac{π}{3})(0\leqq\theta\leqq\displaystyle \frac{2}{3}π)$

③$y=\cos (2\theta-\displaystyle \frac{π}{3})(\displaystyle \frac{π}{4}\leqq\theta\leqq\displaystyle \frac{π}{2})$

④$y=2\cos(2\theta-\displaystyle \frac{π}{6})(\displaystyle \frac{π}{6}\leqq\theta\leqq\displaystyle \frac{π}{3})$
投稿日:2015.08.22

<関連動画>

福田のわかった数学〜高校2年生078〜三角関数(17)2直線のなす角(1)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(17) なす角(1)
2直線$y=3x-1, y=-2x+4$
のなす角$\theta(0 \lt \theta \lt \frac{\pi}{2})$を求めよ。
この動画を見る 

光文社新書「中学の知識でオイラー公式がわかる」Vol 4 加法定理

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
加法定理解説動画です
この動画を見る 

sin cos

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
値を求めよ
$\sin75^{\circ}+\sin120^{\circ}-\cos150^{\circ}+\cos165^{\circ}$
この動画を見る 

【高校数学】2018年度センター試験・数学ⅡB・過去問解説~大問1の1三角関数~【数学ⅡB】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 1ラジアンとは、㋐のことである。
  ㋐に当てはまるものを、次の⓪~③のうちから一つ選べ。

  ⓪半径が1、面積が1の扇形の中心角の大きさ
  ①半径がx、面積が1の扇形の中心角の大きさ
  ②半径が1、張の長さが1の扇形の中心角の大きさ
  ③半径がx、弧の長さが1の扇形の中心角の大きさ


(2) 144°を弧度で表すと$\displaystyle \frac{㋑}{㋒}$xラジアンである。
  また、$\displaystyle \frac{23}{12}$xラジアンを度で表すと[エオカ]である。


(3) $\displaystyle \frac{x}{2}$≦θ≦xの範囲で2sin(θ+$\displaystyle \frac{π}{5}$)-2cos(θ+$\displaystyle \frac{π}{30}$=1を満たすθの値を求めよう。
  x=θ+$\displaystyle \frac{π}{5}$とおくと、①は2sin x-2cos(x-$\displaystyle \frac{π}{㋖}$=1と表せる。
  加法定理を用いると、この式はsin x-$\sqrt{ ㋗ }$cos x=1となる。

  さらに、三角関数の合成を用いるとsin(x-$\displaystyle \frac{π}{㋘}$)=$\displaystyle \frac{1}{㋙}$と変形できる。
  x=θ+$\displaystyle \frac{π}{5}$、$\displaystyle \frac{π}{2}$≦θ≦πだから、θ=$\displaystyle \frac{㋚㋛}{㋜㋝}$πである。
この動画を見る 

数Ⅲ頻出問題!確実に取れるようになっておこう!【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\triangle$ABCは条件$\angle B$=2,$\angle A,BC$=1を満たす三角形のうちで
面積が最大のものであるとする。
このとき、$cos\angle B$を求めよ。

京都大入試過去問
この動画を見る 
PAGE TOP