東京農工大 3次関数の最大値 - 質問解決D.B.(データベース)

東京農工大 3次関数の最大値

問題文全文(内容文):
$ f(x)=2x^3-5x^2-4x+1,x \leqq a $における$f(n)$の最大値を求めよ.

東京農工大過去問
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=2x^3-5x^2-4x+1,x \leqq a $における$f(n)$の最大値を求めよ.

東京農工大過去問
投稿日:2022.10.04

<関連動画>

静岡大 数学的帰納法 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#数列#数学的帰納法#静岡大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
静岡大学過去問題
n自然数
(1)$4^{n+1}+5^{2n-1}$は21で割り切れることを証明
(2)次の条件を満たす定数でない多項式f(x)を推定し、その推定が正しいことを証明せよ。
(a)f(4)=21
(b)すべての自然数nに対し$x^{n+1}+(x+1)^{2n-1}$はf(x)で割り切れる。
この動画を見る 

福田の数学〜青山学院大学2023年理工学部第3問〜放物線上の4点で作る四角形の面積の最大

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とするxy平面上の放物線
$y$=$-x^2$+$4x$
を$C$とする。また、放物線$C$上に点A(4,0), P($p$, $-p^2+4p$), Q($q$, $-q^2+4q$)をとる。ただし、0<$p$<$q$<4 とする。
(1)放物線$C$の接線のうち、直線APと傾きが等しいものを$l$とする。接線$l$の方程式を求めよ。
(2)点Pを固定する。点Qが$p$<$q$<4 を満たしながら動くとき、四角形OAQPの面積の最大値を$p$を用いて表せ。
(3)(2)で求めた四角形OAQPの面積の最大値を$S(p)$とおく。0<$p$<4 のとき、
関数$S(p)$の最大値を求めよ。
この動画を見る 

福田の数学〜東京慈恵会医科大学2024医学部第4問〜円板を軸の周りに回転してできる立体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\mathrm{O}$を原点とする$\mathrm{xyz} $平面において、3点 $\mathrm{A(1,\dfrac{2}{\sqrt{3}}, 0), B(-1, \dfrac{2}{\sqrt{3}}, 0), C(0, 0, 2)}$ の定める平面$\mathrm{ABC}$ 上に$\mathrm{O}$ から垂線$\mathrm{OH}$ を下ろす。平面$\mathrm{ABC}$ において、$\mathrm{H}$ を中心とする半径$\mathrm{1}$の円板(内部を含む)$\mathrm{D}$ を考える。
(1)平面$\mathrm{z = t}$ が$\mathrm{D}$と交わるような$\mathrm{t}$の範囲を求めよ。
(2)$\mathrm{D}$を$\mathrm{z}$軸の周りに$\mathrm{1}$回転させるとき、$\mathrm{D}$が通過してできる立体$\mathrm{K}$の体積$\mathrm{V}$を求めよ。
この動画を見る 

福田のおもしろ数学340〜三角関数の最大値

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$-\dfrac{5}{12}\pi \leqq x \leqq -\dfrac{\pi}{3}$のとき
$y=\tan(x+\dfrac23\pi)-\tan(x+\dfrac\pi6)+\cos(x+\dfrac\pi6)$
の最大値を求めて下さい。
この動画を見る 

複素関数論⑩ 高専数学 複素積分*ex2, *2

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$C_{\alpha}:Z=\alpha+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C\alpha}^{} \ \dfrac{1}{(Z-\alpha)^n}\ \alpha_Z$

(2) $C_{\alpha}:Z=1+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C}^{} \ \dfrac{2}{Z-1}\ \alpha_Z$
この動画を見る 
PAGE TOP