福田の数学〜東京大学2018年理系第5問〜複素数平面上の点の軌跡 - 質問解決D.B.(データベース)

福田の数学〜東京大学2018年理系第5問〜複素数平面上の点の軌跡

問題文全文(内容文):
複素数平面上の原点を中心とする半径 1 の円を C とする。
点 P(z) は C 上にあり、点 A(I) とは異なるとする。
点 P における円 C の接線に関して、点 A と対称な点を Q(u) とする。
ω=11uとおきωと共役な複素数をωで表す。

(1)uとωωをzについての整数として表し、絶対値の値|ω+ω1||ω|を求めよ。
(2)Cのうち実部が12以下の複素数平面で表される部分をCとする。点P(z)がC’上を動くときの点R(ω)の軌跡を求めよ。
  ω=x+yi(x,yは実数)とおく。

2018東大理系過去問
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上の原点を中心とする半径 1 の円を C とする。
点 P(z) は C 上にあり、点 A(I) とは異なるとする。
点 P における円 C の接線に関して、点 A と対称な点を Q(u) とする。
ω=11uとおきωと共役な複素数をωで表す。

(1)uとωωをzについての整数として表し、絶対値の値|ω+ω1||ω|を求めよ。
(2)Cのうち実部が12以下の複素数平面で表される部分をCとする。点P(z)がC’上を動くときの点R(ω)の軌跡を求めよ。
  ω=x+yi(x,yは実数)とおく。

2018東大理系過去問
投稿日:2024.02.15

<関連動画>

福田の1.5倍速演習〜合格する重要問題075〜浜松医科大学2017年度医学部第1問〜複素数の実部と虚部

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
1 以下の問いに答えよ。
(1)|z| ≦ |z-(3+i)|, |z-z¯| ≦ 1および|z-2i| ≦ 2を同時にみたす複素数zに対応する点の領域を複素数平面上に図示せよ。
(2)(1)で得られた領域内の点に対応する複素数のうち、実部が最大となるものをα、実部と虚部の和が最大となるものをβとするとき、αβを求めよ。
(3)次の式で定義されるwnの実部をRnとするとき、無限級数n=1Rnの和を求めよ。
wn={1+(23)i}(3+i)3(n1)24(n1) (n=1,2,3,)

2017浜松医科大学医学部過去問
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜京都大学の問題に挑戦

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1 w0でない複素数、x,yw+1w=x+yiを満たす実数とする。
(1)実数RR>1を満たす定数とする。wが絶対値Rの複素数
全体を動くとき、xy平面上の点(x, y)の軌跡を求めよ。

(2)実数α0<α<π2を満たす定数とする。wが偏角αの複素数
全体を動くとき、xy平面上の点(x, y)の軌跡を求めよ。

京都大学過去問
この動画を見る 

福田の数学〜中央大学2022年理工学部第4問〜複素数平面上の共線条件と正三角形になる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#図形への応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
中央大学2022年理工学部第4問解説です

tを実数とし、 xの3次式f(x) を
ƒ(x) = x³ + (1 − 2t)x² + (4 − 2t)x +4
により定める。以下の問いに答えよ。
(1) 3 次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x)=0 が虚数の
解をもつようなtの範囲を求めよ。
実数t が (1) で求めた範囲にあるとき、 方程式 f(x) = 0 の異なる2つの虚数解を
a,βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。
以下、α, β,γを複素数平面上の点とみなす。
(2) α, β,γをtを用いて表せ。また、実数t が (1) で求めた範囲を動くとき、点α
が描く図形を複素数平面上に図示せよ。
(3) 3点 α, β, γが一直線上にあるようなtの値を求めよ。
(4) 3点 α, β, γが正三角形の頂点となるようなtの値を求めよ。
この動画を見る 

名古屋大学 z^6=64 の6つの解を求めよ 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
'05名古屋大学過去問題
Z6=64
この動画を見る 

産業医科大 三角比の計算

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#産業医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
cos27π+cos47π+cos87π=?

sin27π+sin47π+sin87π=?

これらを求めよ。

産業医科大過去問
この動画を見る 
PAGE TOP preload imagepreload image