大学入試問題#231 電気通信大学(2012) #不定積分 - 質問解決D.B.(データベース)

大学入試問題#231 電気通信大学(2012) #不定積分

問題文全文(内容文):
$\displaystyle \int \sin(log\ x)dx$を計算せよ。

出典:2012年電気通信大学 入試問題
単元: #大学入試過去問(数学)#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \sin(log\ x)dx$を計算せよ。

出典:2012年電気通信大学 入試問題
投稿日:2022.06.19

<関連動画>

【数Ⅲ-142】分数関数の積分②

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(分数関数の積分➁)

Q.次の不定積分を求めよ

①$\int \frac{2x^3+4x^2+6}{x^2+2x-3}dx$

➁$\int \frac{x}{x^2+x-6}dx$

③$\int \frac{1}{x^2(x+3)}dx$
この動画を見る 

練習問題51 広島大学 改 不定積分

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int\ 2(x-1)e^{-x}\cos\ x\ dx$
$\displaystyle \int\ e^{-x}\cos\ x\ dx=\displaystyle \frac{e^{-x}}{2}(\sin\ x-\cos\ x)+c$
$\displaystyle \int\ e^{-x}\sin\ x\ dx=-\displaystyle \frac{e^{-x}}{2}(\sin\ x+\cos\ x)+c$

$c$は積分定数

出典:広島大学
この動画を見る 

#高専#不定積分_19#元高専教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^{2x}-e^{-2x}}{e^x-e^{-x}} dx$

出典:国立高等専門学校機構
この動画を見る 

大学入試問題#636「ミスなく」 東京電機大学(2020) #不定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#東京電機大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^3log(x^2+1) dx$

出典:2020年東京電機大学 入試問題
この動画を見る 

大学入試問題#819「楽に計算したい」 #奈良教育大学(2009) #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
次の等式を満たす関数$f(x)$を求めよ。
$f(x)=\cos\ x+2\displaystyle \int_{0}^{\frac{\pi}{2}} tf(t) \sin\ t\ dt$

出典:2009年奈良教育大学
この動画を見る 
PAGE TOP