佐賀大 三次関数 - 質問解決D.B.(データベース)

佐賀大 三次関数

問題文全文(内容文):
$y=x^3-x$上を点$P$が原点から点$A(a,a^3-a)$まで動く
$(a \gt 0)\triangle OAP$の最大値を求めよ

出典:2005年佐賀大学 過去問
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3-x$上を点$P$が原点から点$A(a,a^3-a)$まで動く
$(a \gt 0)\triangle OAP$の最大値を求めよ

出典:2005年佐賀大学 過去問
投稿日:2020.03.27

<関連動画>

福田のわかった数学〜高校3年生理系058〜微分(3)媒介変数表示の微分

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数列$\textrm{III}$ 微分(3) 媒介変数表示
$x=a(\theta-\sin\theta), y=a(1-\cos\theta)$のとき、$\frac{dy}{dx},\frac{d^2y}{dx^2}$を$\theta$で表せ。
この動画を見る 

【数Ⅲ】三角関数・指数・対数の微分公式【合成関数との合せ技】

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
三角関数・指数・対数の微分公式に関して解説していきます.
この動画を見る 

福田の数学〜名古屋大学2024年理系第1問〜接線の本数と整数解

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 関数$f(x)$=$\sqrt x$+$\displaystyle\frac{2}{\sqrt x}$ ($x$>0)に対して、$y$=$f(x)$のグラフを$C$とする。
(1)$f(x)$の極値を求めよ。
(2)$x$軸上の点P($t$, 0)から$C$にちょうど2本の接線を引くことができるとする。
そのような実数$t$の値の範囲を求めよ。
(3)(2)において、$C$の2つの接点の$x$座標を$\alpha$, $\beta$($\alpha$<$\beta$)とする。$\alpha$, $\beta$がともに整数であるような組($\alpha$, $\beta$)をすべて求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題090〜名古屋大学2018年度理系第1問〜定積分と不等式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 自然数nに対し、定積分$I_n$=$\displaystyle\int_0^1\frac{x^n}{x^2+1}dx$を考える。このとき、次の問いに答えよ。
(1)$I_n$+$I_{n+2}$=$\frac{1}{n+1}$を示せ。
(2)0≦$I_{n+1}$≦$I_n$≦$\frac{1}{n+1}$を示せ。
(3)$\displaystyle\lim_{n \to \infty}nI_n$ を求めよ。
(4)$S_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{2k}$ とする。このとき(1), (2)を用いて$\displaystyle\lim_{n \to \infty}S_n$ を求めよ。

2018名古屋大学理系過去問
この動画を見る 

福田の数学〜早稲田大学2023年商学部第1問(1)〜面積計算と不等式の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(1)$n$を2以上の整数とする。整数$k$$\in$$\left\{1,2,...,n\right\}$に対し、$y$軸に平行な直線$x$=$2^{k-1}$と曲線$y$=$\log_2 x$の交点を$P_k$とする。このとき、線分$P_1P_2$, $P_2P_3$, ..., $P_{n-1}P_n$と直線$x$=$2^{n-1}$および$x$軸で囲まれる図形の面積を$S(n)$とする。不等式
$\displaystyle\frac{S(n)}{2^n}$≧2023
を満たす最小の$n$は$\boxed{\ \ ア\ \ }$である。
この動画を見る 
PAGE TOP