大学入試問題「明日の2次試験にでる問題」 ハルハルさんの名作(過去1番) 体感偏差値は72 - 質問解決D.B.(データベース)

大学入試問題「明日の2次試験にでる問題」 ハルハルさんの名作(過去1番) 体感偏差値は72

問題文全文(内容文):
$T=\displaystyle \frac{(x+y+z)^3}{x^3+y^3+z^3}$
$\displaystyle \frac{1}{x}+\displaystyle \frac{1}{y}+\displaystyle \frac{1}{z}=0$のとき
$T$のとりうる値の範囲を求めよ
チャプター:

00:00 イントロ(問題紹介)
00:33 本編スタート
25:43 作成した解答①
25:52 作成した解答②
26:04 作成した解答③
26:15 作成した解答④
26:25 エンディング(楽曲提供:兄イエティさん)

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$T=\displaystyle \frac{(x+y+z)^3}{x^3+y^3+z^3}$
$\displaystyle \frac{1}{x}+\displaystyle \frac{1}{y}+\displaystyle \frac{1}{z}=0$のとき
$T$のとりうる値の範囲を求めよ
投稿日:2023.02.24

<関連動画>

福田の数学〜上智大学2021年理工学部第1問〜双曲線の方程式と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 媒介変数表示\\
x=\frac{2}{\cos\theta}, y=3\tan\theta+1\\
で表される図形Cを考える。\\
\\
(1)Cは頂点(±\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ })、焦点(±\sqrt{\boxed{\ \ ウ\ \ }},\ \boxed{\ \ エ\ \ })、\\
漸近線y=±\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}x+\boxed{\ \ キ\ \ }をもつ双曲線である。\\
(2)双曲線Cと直線x=4は、2点(4,\ \boxed{\ \ ク\ \ }±\boxed{\ \ ケ\ \ }\sqrt{\boxed{\ \ コ\ \ }})\\
で交わる。\\
(3)双曲線Cと直線x=4で囲まれる部分をy軸の周りに1回転\\
させてできる立体の体積は\ \boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}\ \pi である。
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

【数Ⅲ-175】曲線の長さ②(媒介変数表示編)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(曲線の長さ②・媒介変数表示編)

ポイント
曲線$x=f(t)$、$y=g(t) (a \leqq t \leqq b)$ の長さ$L$は $L=$①

②曲線$x=a\cos^3θ、y=a \sin^3θ (0 \leqq θ \leqq \frac{\pi}{2})$の長さを求めよ。
ただし$a \gt 0$とする。
この動画を見る 

福田のわかった数学〜高校3年生理系099〜不等式の証明(6)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(6)\hspace{170pt}\\
0 \lt a \lt b \lt \frac{\pi}{2}のとき、\frac{a}{b} \lt \frac{\sin a}{\sin b}が成り立つことを証明せよ。
\end{eqnarray}
この動画を見る 

【割り算の微分】商の微分の導出について解説しました!【数学III】

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
商の微分の導出について解説します。
この動画を見る 

福田の数学〜青山学院大学2022年理工学部第3問〜関数の増減と極値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
関数
$f(x)=\sqrt{1-2\cos x}-\frac{1}{2}x$
について以下の問いに答えよ。
(1)$f'(x)$を求めよ。
(2)$f'(x) \gt 0$ となるxの値の範囲を求めよ。
(3)\ f(x)の増減を調べ、極値を求めよ。

2022青山学院大学理工学部過去問
この動画を見る 
PAGE TOP