東京医科大 見掛け倒しな問題 - 質問解決D.B.(データベース)

東京医科大 見掛け倒しな問題

問題文全文(内容文):
$1008$の正の約数$n$個を大きい順に並べた数列を
$a_1,a_2・・・・・・,a_n$とし、$S(x)$を$S(x)=\displaystyle \sum_{k=1}^n a_k^x $とする。
①$S(0)$ ②$S(1)$ ③$S(-1)$ ④$\dfrac{S(2)}{S(1)}$
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#東京医科大学#東京医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1008$の正の約数$n$個を大きい順に並べた数列を
$a_1,a_2・・・・・・,a_n$とし、$S(x)$を$S(x)=\displaystyle \sum_{k=1}^n a_k^x $とする。
①$S(0)$ ②$S(1)$ ③$S(-1)$ ④$\dfrac{S(2)}{S(1)}$
投稿日:2023.06.05

<関連動画>

福島県立医大 4項間漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-3x^2-27x-27=0$の3つの解を$\alpha,\beta,\gamma$
$A_n=\alpha^n+\beta^n+\gamma^n$

(1)
$A_{n+3}$を$A_{n+2},A_{n+1},A_n$で表せ

(2)
$A_n$は$3^n$の倍数であることを示せ

出典: 福島県立医科大学 過去問
この動画を見る 

【数B】数列:漸化式と数学的帰納法:三項間漸化式 PRIME B 85(1)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
教材: #PRIME数学#PRIME数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のように定められた数列${a_n}$の一般項を求めよ。
$a_1=1$,$a_2=2$,$a_{n+2}=4a_{n+1}-3a_{n}$
この動画を見る 

確率 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回振って,出た目の積を5で割った余りが1である確率$p_n$を求めよ.
この動画を見る 

【数B】数列・等比数列の和 公比が4、第10項が4096である等比数列の初項を求めよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1項から第10項までの和が4、第1項から第20項までの和が24のとき、第1項から第40項までの和を求めよ。
この動画を見る 

2019東工大 栗崎先生に生徒貫太郎が教わる Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#微分とその応用#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\displaystyle \frac{2^8}{3^4}$

整列$b_{k}=\displaystyle \frac{(k+1)^{k+1}}{a^kk!}$

(1)
$f(x)=(x+1)log(1+\displaystyle \frac{1}{x})$は$x \gt 0$で減少することを示せ

(2)
数列{$b_{k}$}の項の最大値$M$を分数で表し、$b_{k}=M$となる$k$をすべて求めよ


出典:2019年東京工業大学 過去問
この動画を見る 
PAGE TOP