福田の数学〜慶應義塾大学2021年薬学部第1問(4)〜三角方程式 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年薬学部第1問(4)〜三角方程式

問題文全文(内容文):
${\Large\boxed{1}}$(4)$\theta$は実数で、$-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$を満たす。方程式
$4\cos\frac{\theta}{2}(\cos\frac{\theta}{2}+\sin\frac{\theta}{2})=1$
を満たすとき、$\sin\theta+\cos\theta$の値は$\boxed{\ \ カ\ \ }$であり、
$\sin\theta$の値は$\boxed{\ \ キ\ \ }$である。

2021慶應義塾大学薬学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)$\theta$は実数で、$-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$を満たす。方程式
$4\cos\frac{\theta}{2}(\cos\frac{\theta}{2}+\sin\frac{\theta}{2})=1$
を満たすとき、$\sin\theta+\cos\theta$の値は$\boxed{\ \ カ\ \ }$であり、
$\sin\theta$の値は$\boxed{\ \ キ\ \ }$である。

2021慶應義塾大学薬学部過去問
投稿日:2021.07.25

<関連動画>

福田の数学〜立教大学2021年経済学部第1問(2)〜円に内接する四角形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)円Cに内接する四角形PQRSにおいて、対角線PRは円Cの中心Oを通る。
また、各辺の長さは、$PQ=1, QR=8, RS=4, SP=7$であり、
角Pの大きさを$\theta$とする。ただし、$0 \lt \theta \lt \pi$とする。
このとき円Cの直径は$\boxed{イ},\cos\theta=\boxed{ウ}$である。

2021立教大学経済学部過去問
この動画を見る 

【高校数学】三角関数4.5~例題で学ぶグラフのかき方~ 4-6【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次のグラフをかけ。(丸付けは動画を参照してください)
(1) y=$\displaystyle \frac{1}{2}$cosθ

(2) y=cos(θ-$\displaystyle \frac{π}{6}$)

(3) y=cos4θ

(4) y=sin$\displaystyle \frac{θ}{2}$

(5) y=tan$\displaystyle \frac{θ}{4}$
この動画を見る 

福田の数学〜中央大学2023年経済学部第1問(3)〜三角関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$0\leqq x\leqq \require{physics}\flatfrac{\pi}{2}$のとき、次の関数が最大となる$x$の値を求めよ。
$y=\sin ^22x+2\cos^2x$

2023中央大学経済学部過去問
この動画を見る 

【高校数学】三角関数⑤~三角方程式の基礎~ 4-7【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
0≦θ<2πのとき、次の方程式を満たすθを求めよ。
(1) 2√3sinθ=-3
(2) 3tanθ+√3=0


次の方程式を満たすθを求めよ。
(1) 2√3sinθ=-3
(2) 3tanθ+√3=0
この動画を見る 

【受験対策】数学-関数12

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の図1は, $y = 2x,y = 3x,y =-2x,y =-3x$の
グラフをそれぞれ表している.
このとき,$y =-2x$のグラフを
ア~エから1つ選び,その記号を書きなさい.

右の図2で,直線$\ell$は関数$y =\dfrac{1}{2}x - 3$ のグラフ,
直線$m$は$y = \dfrac{1}{2}x + 5$ のグラフで,
2点,$A,B$は直線$\ell$上の点,2点$C,D$は直線$m$上の点で,
四角形$ABDC$は平行四辺形である.
点$A$の$x$座標が$-2$,点$B$の$y$座標が$-1$のとき,
次の②,③に答えなさい.

②点$C$の$x$座標が$3$のとき,点$D$の座標を求めなさい.

③ 四角形$ABDC$の面積を求めなさい.

図は動画内参照
この動画を見る 
PAGE TOP