【数学Ⅱ】三角関数の式の証明 - 質問解決D.B.(データベース)

【数学Ⅱ】三角関数の式の証明

問題文全文(内容文):
【数学Ⅱ】三角関数の式の証明解説動画です
-----------------
cos2θsin2θ1+2sinθcosθ=1tanθ1+tanθ
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅱ】三角関数の式の証明解説動画です
-----------------
cos2θsin2θ1+2sinθcosθ=1tanθ1+tanθ
投稿日:2020.10.18

<関連動画>

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第1問〜三角関数、指数関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1
[1](1)次の問題Aについて考えよう。
A y=sinθ+3cosθ(0θπ2)$

sinπ    =32, cosπ    =12
であるから、三角関数の合成により

y=    sin(θ+π    )

と変形できる。よって、yθ=π    で最大値      をとる。

(2)pを定数とし、次の問題Bについて考えよう。
B y=sinθ+pcosθ(0θπ2)

(i) p=0のとき、yθ=π    で最大値      をとる。
(ii) p>0のときは、加法定理
cos(θα)=cosθcosα+sinθsinα
を用いると
y=sinθ+pcosθ=    cos(θα)
と表すことができる。ただし、α
sinα=        cosα=        0<α<π2
を満たすものとする。このとき、yθ=    で最大値
    をとる。

(iii) p<0のとき、yθ=    で最大値    をとる。

                の解答群(同じものを繰り返
し選んでもよい。)
1
1
p
p
1p
1+p
p2
p2
1p2
1+p2
(1p)2
(1+p)2


        の解答群(同じものを繰り返し選んでもよい。)
0
α
π2


[2]二つの関数f(x)=2x+2x2g(x)=2x2x2 について考える。

(1)f(0)=    g(0)=    である。また、f(x)は相加平均
と相乗平均の関係から、x=    で最小値      をとる。
g(x)=2 となるxの値はlog2(        )である。

(3)次の①~④は、xにどのような値を代入しても常に成り立つ。
f(x)=     
g(x)=     
{f(x)}2{g(x)}2=     
g(2x)=     f(x)g(x) 

        の解答群(同じものを繰り返し選んでもよい。)
f(x)
f(x)
g(x)
g(x)


(3)花子さんと太郎さんは、f(x)g(x)の性質について話している。

花子:①~④は三角関数の性質に似ているね。
太郎:三角関数の加法定理に類似した式(A)~(D)を考えてみたけど、
常に成り立つ式はあるだろうか。
花子:成り立たない式を見つけるために、式(A)~(D)のβに何か具体
的な値を代入して調べてみたらどうかな。

太郎さんが考えた式
f(αβ)=f(α)g(β)+g(α)f(β) (A)
f(α+β)=f(α)f(β)+g(α)g(β) (B)
g(αβ)=f(α)f(β)+g(α)g(β) (C)
g(α+β)=f(α)g(β)g(α)f(β) (D)


(1),(2)で示されたことのいくつかを利用すると、式(A)~(D)のうち、
    以外の三つは成り立たないことが分かる。    は左辺と右辺
をそれぞれ計算することによって成り立つことが確かめられる。

    の解答群
(A)
(B)
(C)
(D)

2021共通テスト過去問
この動画を見る 

中央大2020微分 3次関数と直線の交点

アイキャッチ画像
単元: #数Ⅱ#三角関数#微分法と積分法#三角関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
f(x)=x3+3x22y=k(x1)2が相異なる3点で交わるkの範囲を求めよ.

2020中央大(経)過去問
この動画を見る 

福田のわかった数学〜高校2年生068〜三角関数(7)三角方程式とグラフ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学II 三角関数(7) 三角方程式
0x2π, 0y2πにおいて
cosy=sin2x のグラフを描け。
この動画を見る 

早稲田大2019微分・3次関数と直線の交点

アイキャッチ画像
単元: #数Ⅱ#三角関数#微分法と積分法#三角関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
y=x2上の(a,a2)における接線がy=x3axと3点で交わるaの範囲を求めよ.

2019早稲田大過去問
この動画を見る 

和歌山大 三項間漸化式 半角の公式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#和歌山大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
和歌山大学過去問題
a1=2sin2θ2,a2=2cosθsin2θ2
2(cos2θ2)an+1=an+2+(cosθ)an
ancosθを用いて表せ。
この動画を見る 
PAGE TOP preload imagepreload image