問題文全文(内容文):
$\displaystyle \int_{0}^{log\ x} \displaystyle \frac{(e^x-1)(e^x-2)}{e^x+1} dx$
出典:広前大学 入試問題
$\displaystyle \int_{0}^{log\ x} \displaystyle \frac{(e^x-1)(e^x-2)}{e^x+1} dx$
出典:広前大学 入試問題
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{log\ x} \displaystyle \frac{(e^x-1)(e^x-2)}{e^x+1} dx$
出典:広前大学 入試問題
$\displaystyle \int_{0}^{log\ x} \displaystyle \frac{(e^x-1)(e^x-2)}{e^x+1} dx$
出典:広前大学 入試問題
投稿日:2022.11.01