2020整数問題 - 質問解決D.B.(データベース)

2020整数問題

問題文全文(内容文):
$2^{2020}$を$66$で割った余りを求めよ
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{2020}$を$66$で割った余りを求めよ
投稿日:2019.12.28

<関連動画>

東工大 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
神戸薬科大学過去問題
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$
$x<y<z$(自然数)

東京工業大学過去問題
$(ab-1)(bc-1)(ca-1)$がabcで割り切れる1<a<b<c(自然数)
a,b,cをすべて求めよ。
この動画を見る 

早稲田(政経)格子点 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
96年 早稲田大学政治経済学部過去問
x-y平面に、互いに異なる 5個の格子点を選ぶ と、その中に次の性質を もつ格子点が少なくと も一対は存在することを示せ

※一対の格子点を結ぶ 線分の中点が格子点
この動画を見る 

合同式 千葉大

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z,n$は自然数である.$x^2=7^{2n}(y^2+10z^2)$である.

(1)平方数を3で割った余りは0か1であることを示せ.
(2)$yz$は3の倍数であることを示せ.
(3)$y,z$が共に素数のとき,$x$を$n$を用いて表せ.

2003千葉大過去問
この動画を見る 

良問だぜ!自画自賛

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数であり,$P$は素数である.
$m^6+3^n=7P$
これを解け.
この動画を見る 

整数問題(フェルマーの小定理)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^n+5^n-1$が$7$の倍数となる自然数$n$の条件を求めよ.
この動画を見る 
PAGE TOP