福田のおもしろ数学351〜漸化式で定まる数列の第2025項の取り得る値の個数 - 質問解決D.B.(データベース)

福田のおもしろ数学351〜漸化式で定まる数列の第2025項の取り得る値の個数

問題文全文(内容文):
$a_1 = 1, a_{n+1} + a_n = ( a_{n+1} - a_n )^2$ で定まる、すべての項が正の数列 $\{ a_n \}$ に対し $a_2025$ の取りうる値は何個あるか。
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_1 = 1, a_{n+1} + a_n = ( a_{n+1} - a_n )^2$ で定まる、すべての項が正の数列 $\{ a_n \}$ に対し $a_2025$ の取りうる値は何個あるか。
投稿日:2024.12.18

<関連動画>

金沢大(医) 漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#金沢大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
金沢大学過去問題
$a_1=36$ (nは自然数)
$a_{n+1}=2a_n+2^{n+3}n-17・2^{n+1}$
(1)$\{ a_n \} $の一般項を求めよ。
(2)$a_n$>$a_{n+1}$となるaの範囲及び$a_n$が最小となるnの値を求めよ。
(3)$S_n=a_1+a_2+a_3+ \cdots +a_n$で$S_n$が最小となるnの値をすべて求めよ。
この動画を見る 

学習院大 漸化式の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
学習院大学過去問題
数列$\{ a_n \}$の初項から第n項までの和を$S_n$とする
$S_n=2n^2+n-a_n$
$a_n$の一般項を求めよ
この動画を見る 

【高校数学】 数B-85 群数列③

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数列$\dfrac{1}{1},\dfrac{1}{2},\dfrac{3}{2},\dfrac{1}{3},\dfrac{3}{3},\dfrac{5}{3},\dfrac{1}{4},\dfrac{3}{4},\dfrac{5}{4},\dfrac{7}{4},\dfrac{1}{5},\dfrac{3}{5},・・・$
について次の問いに答えよう.

①$\dfrac{5}{9}$は第何項か求めよう.

②この数列の第200項を求めよう.
この動画を見る 

福田の一夜漬け数学〜数列・等差x等比型の和の裏技〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の数列の和を求めよ。
$1・1, 4・3, 7・3^2,$$ 10・3^3,$$ \cdots,$$ (3n-2)・3^{n-1}$

次の和を求めよ。
$S=2・\left(\frac{1}{3}\right)+4・\left(\frac{1}{3}\right)^2$$+6・\left(\frac{1}{3}\right)^3$$+\cdots$$+2n・\left(\frac{1}{3}\right)^n$
この動画を見る 

【数B】【数列】数学的帰納法1 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n$は自然数とする。数学的帰納法によって、次の等式を証明せよ。
(1) $1+2\cdot\dfrac32+\cdots+n(\dfrac32)^{n-1}=2(n-2)(\dfrac32)^n+4$
(2) $(n+1)(n+2)(n+3)\cdots(2n)=2^n\cdot1\cdot3\cdot5\cdots(2n-1)$
この動画を見る 
PAGE TOP