問題文全文(内容文):
平らな広場の地点Oを原点として,東の方向をx軸の正の向き,北の方向をy軸の正の向きとする座標平面を考える。また,1mを1の長さとする。
地点A,Bの座標をそれぞれ(-4,1),(3,-5)とする。
(1)地点Aから東に5m進み,南に7m進んだ位置にある点の座標を答えよ。
(2)地点Bから西に4m進み,北に1m進んだ位置にある点の座標を答えよ。
平らな広場の地点Oを原点として,東の方向をx軸の正の向き,北の方向をy軸の正の向き,真上の方向をz軸の正の向きとする座標空間を考える。また,1mを1の長さとする。この広場の上空に気球Pが浮かんでいる。レーザー距離計で,次のように測定した。ただし,気球Pは1つの点とみなす。
[1]地点Oから東へ15m,北へ1m進んだ地点A(15,1,0)から,Pまでの距離を測ると41m
[2]地点Oから北へ21m進んだ地点B(0,21,0)から,Pまでの距離を測ると56m
[3]地点Oから南へ11m進んだ地点C(0,-11,0)から,Pまでの距離を測ると56m
このとき,気球Pの位置を求めよ。
座標空間において,A(3,2,0),B(3,4,-2),C(1,2,-2)を頂点とする三角形は,正三角形であることを示せ。
平らな広場の地点Oを原点として,東の方向をx軸の正の向き,北の方向をy軸の正の向きとする座標平面を考える。また,1mを1の長さとする。
地点A,Bの座標をそれぞれ(-4,1),(3,-5)とする。
(1)地点Aから東に5m進み,南に7m進んだ位置にある点の座標を答えよ。
(2)地点Bから西に4m進み,北に1m進んだ位置にある点の座標を答えよ。
平らな広場の地点Oを原点として,東の方向をx軸の正の向き,北の方向をy軸の正の向き,真上の方向をz軸の正の向きとする座標空間を考える。また,1mを1の長さとする。この広場の上空に気球Pが浮かんでいる。レーザー距離計で,次のように測定した。ただし,気球Pは1つの点とみなす。
[1]地点Oから東へ15m,北へ1m進んだ地点A(15,1,0)から,Pまでの距離を測ると41m
[2]地点Oから北へ21m進んだ地点B(0,21,0)から,Pまでの距離を測ると56m
[3]地点Oから南へ11m進んだ地点C(0,-11,0)から,Pまでの距離を測ると56m
このとき,気球Pの位置を求めよ。
座標空間において,A(3,2,0),B(3,4,-2),C(1,2,-2)を頂点とする三角形は,正三角形であることを示せ。
チャプター:
0:00 一問目解説
1:30 二問目解説
4:49 三問目解説
6:10 エンディング
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
平らな広場の地点Oを原点として,東の方向をx軸の正の向き,北の方向をy軸の正の向きとする座標平面を考える。また,1mを1の長さとする。
地点A,Bの座標をそれぞれ(-4,1),(3,-5)とする。
(1)地点Aから東に5m進み,南に7m進んだ位置にある点の座標を答えよ。
(2)地点Bから西に4m進み,北に1m進んだ位置にある点の座標を答えよ。
平らな広場の地点Oを原点として,東の方向をx軸の正の向き,北の方向をy軸の正の向き,真上の方向をz軸の正の向きとする座標空間を考える。また,1mを1の長さとする。この広場の上空に気球Pが浮かんでいる。レーザー距離計で,次のように測定した。ただし,気球Pは1つの点とみなす。
[1]地点Oから東へ15m,北へ1m進んだ地点A(15,1,0)から,Pまでの距離を測ると41m
[2]地点Oから北へ21m進んだ地点B(0,21,0)から,Pまでの距離を測ると56m
[3]地点Oから南へ11m進んだ地点C(0,-11,0)から,Pまでの距離を測ると56m
このとき,気球Pの位置を求めよ。
座標空間において,A(3,2,0),B(3,4,-2),C(1,2,-2)を頂点とする三角形は,正三角形であることを示せ。
平らな広場の地点Oを原点として,東の方向をx軸の正の向き,北の方向をy軸の正の向きとする座標平面を考える。また,1mを1の長さとする。
地点A,Bの座標をそれぞれ(-4,1),(3,-5)とする。
(1)地点Aから東に5m進み,南に7m進んだ位置にある点の座標を答えよ。
(2)地点Bから西に4m進み,北に1m進んだ位置にある点の座標を答えよ。
平らな広場の地点Oを原点として,東の方向をx軸の正の向き,北の方向をy軸の正の向き,真上の方向をz軸の正の向きとする座標空間を考える。また,1mを1の長さとする。この広場の上空に気球Pが浮かんでいる。レーザー距離計で,次のように測定した。ただし,気球Pは1つの点とみなす。
[1]地点Oから東へ15m,北へ1m進んだ地点A(15,1,0)から,Pまでの距離を測ると41m
[2]地点Oから北へ21m進んだ地点B(0,21,0)から,Pまでの距離を測ると56m
[3]地点Oから南へ11m進んだ地点C(0,-11,0)から,Pまでの距離を測ると56m
このとき,気球Pの位置を求めよ。
座標空間において,A(3,2,0),B(3,4,-2),C(1,2,-2)を頂点とする三角形は,正三角形であることを示せ。
投稿日:2025.01.25