【数検準2級】高校数学:数学検定準2級2次:問3 - 質問解決D.B.(データベース)

【数検準2級】高校数学:数学検定準2級2次:問3

問題文全文(内容文):
問3.次の問いに答えなさい。
(4) 右の図の四角形ABCDは平行四辺形です。また、点E、F、Gは辺ABを4等分する点で、点H、I、Jは辺CDを4等分する点です。
斜線部分の面積が10㎝²であるとき、四角形ABCDの面積を求めなさい。この問題は答えだけを書いてください。
チャプター:

0:00 問題3について
0:48 相似な図形
2:36 解説
4:36 まとめ

単元: #数A#数学検定・数学甲子園・数学オリンピック等#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学検定#数学検定準2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問3.次の問いに答えなさい。
(4) 右の図の四角形ABCDは平行四辺形です。また、点E、F、Gは辺ABを4等分する点で、点H、I、Jは辺CDを4等分する点です。
斜線部分の面積が10㎝²であるとき、四角形ABCDの面積を求めなさい。この問題は答えだけを書いてください。
投稿日:2023.05.14

<関連動画>

図形の性質 4STEP数A 177,178,179 三角形の辺と角【中学受験のドラえもんがていねいに解説】

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質
指導講師: 理数個別チャンネル
問題文全文(内容文):
177:∠B=90度の直角三角形ABCの辺BC上に頂点と異なる点Pを取る時、AB<AP<ACであることを証明せよ。
178:△ABCにおいて、AB>ACとする。∠Aの二等分線と辺BCの交点をPとする時、次の①~④のうちで常に成り立つものを全て選べ。
①BP=PC  ②AB>AP  ③AC>AP  ④AC>CP
179:次の長さの線分を3辺とする三角形が存在するようなXの値の範囲を求めよ。
(1)X、2、6  (2)3X、X+4、X+2
この動画を見る 

【数A】変数3つの不定方程式を解く!

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
5x+7y+9z=1を満たす整数解x,y,zを求めよ
この動画を見る 

図形の性質 4STEP数A 226,227,228 円の位置関係【TAKAHASHI名人がていねいに解説】

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間内の異なる2つの直線ℓ 、m と異なる2つの平面α,βについて,
次の記述は常に正しいか。
(1) ℓ⊥α、m⊥αならば、ℓ⊥mである。
(2) ℓ⊥α、m⊥αならば、α//βである。
(3) ℓ//α、m//αならば、ℓ//mである。
(4) ℓ//α、m⊥αならば、ℓと並行でmと垂直な直線がある。

正六角柱を底面に
平行でない1つの平面で切ったものである。
六角形ABCDEF について,
辺AB と平行な辺を答えよ。

立方体について、次の問いに答えよ。
(1) 辺BF と垂直な面をすべて答えよ。
(2) 平面 BFHD と平行な辺をすべて答えよ。
(3) この立方体に,平行な位置関係にある面は何組あるか。
(4) 平面ABGHと垂直な面をすべて答えよ。
この動画を見る 

場合の数 4STEP数A 78 重複組合せ1【烈’s study!がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率
指導講師: 理数個別チャンネル
問題文全文(内容文):
5個のリンゴを3人に分配する。1個ももらわない人があってもよいとすると何通りの分け方があるか。また、1人に少なくとも1個は与えるものとするとどうか。
この動画を見る 

場合の数 4STEP数A 20,21 3つの集合~共通部分に気をつけよう~【さこすけ’s サイエンスがていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題20 
1から100までの整数のうち、次のような数は何個あるか。
(1)2,3,7の少なくとも1つで割り切れる数
(2)2では割り切れるが、3でも7でも割り切れない数
問題21
68人の人に、A,B,Cの3都市への旅行の経験を調査したところ、全員がA,B,Cの
うち少なくとも1つへは行ったことがあった。また、BとCの両方、CとAの両方、
AとBの両方へ行ったことのある人の数は、それぞれ21人、19人、25人であり、
BとCの少なくとも一方、CとAの少なくとも一方、AとBの少なくとも一方へ
行ったことのある人の数は、それぞれ59人、56人、60人であった。
(1)A,B,Cの各都市へ行ったことのある人の数は、それぞれ何人か。
(2)A,B,Cの全都市へ行ったことのある人の数は何人か。
この動画を見る 
PAGE TOP