福田の一夜漬け数学〜ルート計算のコツ(2)値の計算 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜ルート計算のコツ(2)値の計算

問題文全文(内容文):
$x=\frac{\sqrt5+2}{\sqrt5-2}$

$y=\frac{\sqrt5-2}{\sqrt5+2}$ のとき、次の値を求めよ。

(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3$
(5)$x^4+y^4$
(6)$x^5+y^5$


$x=\sqrt5+2$のとき、次の値を求めよ。
(1)$x+\frac{1}{x}$

(2)$x^2+\frac{1}{x^2}$

(3)$x^3+\frac{1}{x^3}$

(4)$x^4+\frac{1}{x^4}$

(5)$x^5+\frac{1}{x^5}$


$\frac{1}{2-\sqrt3}$の整数部分を$a$,少数部分を$b$とする。次の値を求めよ。
(1)$a$
(2)$b$
(3)$a+b+b^2$
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x=\frac{\sqrt5+2}{\sqrt5-2}$

$y=\frac{\sqrt5-2}{\sqrt5+2}$ のとき、次の値を求めよ。

(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3$
(5)$x^4+y^4$
(6)$x^5+y^5$


$x=\sqrt5+2$のとき、次の値を求めよ。
(1)$x+\frac{1}{x}$

(2)$x^2+\frac{1}{x^2}$

(3)$x^3+\frac{1}{x^3}$

(4)$x^4+\frac{1}{x^4}$

(5)$x^5+\frac{1}{x^5}$


$\frac{1}{2-\sqrt3}$の整数部分を$a$,少数部分を$b$とする。次の値を求めよ。
(1)$a$
(2)$b$
(3)$a+b+b^2$
投稿日:2018.04.04

<関連動画>

福田の数学〜九州大学2022年文系第1問〜絶対値の付いた放物線と直線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#解と判別式・解と係数の関係#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
aを$-3 \lt a \lt 13$を満たす実数とし、次の曲線Cと直線lが接しているとする。
$C:y=|x^2+(3-a)x-3a|, l:y=-x+13$
以下の問いに答えよ。
(1)aの値を求めよ。
(2)曲線Cと直線lで囲まれた2つの図形のうち、点(a,0)が境界線上にある図形の面積を求めよ。

2022九州大学文系過去問
この動画を見る 

【高校数学】  数Ⅰ-86  正弦定理

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
△ABCの外接円の半径をRとすると

①____=②____=③____=2R


◎△ABCにおいて、外接円の半径をRとするとき、次のものを求めよう。

④B=120°,R=4のとき b

⑤a=5$\sqrt{ 3 }$,R=5のとき A

⑥A=60°,C=75°,a=$2\sqrt{ 6 }$のとき Rとb

※図は動画内参照
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第3問〜絶対値の付いた2次関数のグラフと直線の共有点と面積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$mを実数とし、関数$y=|x^2-5x+4|$のグラフをC、直線$y=mx$を$l$とする。
(1)グラフCと直線lの共有点の個数は
$\boxed{\ \ アイ\ \ } \lt m \lt \boxed{\ \ ウ\ \ }$のとき0個
$m=\boxed{\ \ エオ\ \ }$のとき1個
$m \lt \boxed{\ \ カキ\ \ },\ m=\boxed{\ \ ク\ \ }$,または$m \gt \boxed{\ \ ケ\ \ }$のとき2個
$m=\boxed{\ \ コ\ \ }$のとき3個
$\boxed{\ \ サ\ \ } \lt m \lt \boxed{\ \ シ\ \ }$のとき4個
以下、グラフCと直線lの共有点の個数が3個の場合を考え、
グラフCと直線lの共有点を、x座標が小さい順にP,Q,Rとする。

(2)3点P,Q,Rのx座標は、順に$\boxed{\ \ ス\ \ }-\sqrt{\boxed{\ \ セ\ \ }},\ \boxed{\ \ ソ\ \ },\ \boxed{\ \ タ\ \ }+\sqrt{\boxed{\ \ チ\ \ }}$である。

(3)グラフCと線分QRで囲まれた部分の面積は$\frac{-\ \boxed{\ \ ツ\ \ }+\boxed{\ \ テト\ \ }\sqrt{\boxed{\ \ ナ\ \ }}}{\boxed{\ \ ニ\ \ }}$である。

2022慶應義塾大学商学部過去問
この動画を見る 

【高校数学】  数Ⅰ-46  2次関数の最大・最小⑤ ・ 動く定義域編①

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$a \gt 0$とする。関数$y=x^2-2x-1(0 \leqq x \leqq a)$について。

①最小値を求めよう。
②最大値を求めよう。
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第2問〜データの分析、共分散と相関係数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} n人のクラス(ただしn \gt 1)で英語と理科のテストを実施する。ただしどちらの科目\\
にも同順位の者はいないとする。出席番号i(i=1,2,\ldots,n)の生徒について、\\
その英語の順位xと理科の順位yの組を(x_i,y_i)で表す。\\
\\
(1)変量xの平均値\bar{ x }と分散s_x^2をそれぞれ求めると\bar{ x }=\boxed{\ \ (あ)\ \ },s_x^2=\boxed{\ \ (い)\ \ } である。\\
\\
(2)変量x,yの共分散s_{xy}とする。クラスの人数nが奇数の2倍であるとき、s_{xy}≠0である\\
ことを示しなさい。\\
\\
(3)i=1,2,\ldots,nに対してd_i=x_i-y_iとおく。変量x,yの相関係数をrとするとき、rは\\
nとd_1,d_2,\ldots,d_nを用いてr=1-\frac{6}{\boxed{\ \ (う)\ \ }}\boxed{\ \ (え)\ \ } と表される。\\
\\
(4)x_iとy_iの間にy_i=\boxed{\ \ (お)\ \ }(i=1,2,\ldots,n)の関係があるときrは最大値\boxed{\ \ (か)\ \ }をとり\\
y_i=\boxed{\ \ (き)\ \ }(i=1,2,\ldots,n)の関係があるときrは最小値\boxed{\ \ (く)\ \ }をとる。
\end{eqnarray}

2021慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP