問題文全文(内容文):
$x=\frac{\sqrt5+2}{\sqrt5-2}$
$y=\frac{\sqrt5-2}{\sqrt5+2}$ のとき、次の値を求めよ。
(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3$
(5)$x^4+y^4$
(6)$x^5+y^5$
$x=\sqrt5+2$のとき、次の値を求めよ。
(1)$x+\frac{1}{x}$
(2)$x^2+\frac{1}{x^2}$
(3)$x^3+\frac{1}{x^3}$
(4)$x^4+\frac{1}{x^4}$
(5)$x^5+\frac{1}{x^5}$
$\frac{1}{2-\sqrt3}$の整数部分を$a$,少数部分を$b$とする。次の値を求めよ。
(1)$a$
(2)$b$
(3)$a+b+b^2$
$x=\frac{\sqrt5+2}{\sqrt5-2}$
$y=\frac{\sqrt5-2}{\sqrt5+2}$ のとき、次の値を求めよ。
(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3$
(5)$x^4+y^4$
(6)$x^5+y^5$
$x=\sqrt5+2$のとき、次の値を求めよ。
(1)$x+\frac{1}{x}$
(2)$x^2+\frac{1}{x^2}$
(3)$x^3+\frac{1}{x^3}$
(4)$x^4+\frac{1}{x^4}$
(5)$x^5+\frac{1}{x^5}$
$\frac{1}{2-\sqrt3}$の整数部分を$a$,少数部分を$b$とする。次の値を求めよ。
(1)$a$
(2)$b$
(3)$a+b+b^2$
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$x=\frac{\sqrt5+2}{\sqrt5-2}$
$y=\frac{\sqrt5-2}{\sqrt5+2}$ のとき、次の値を求めよ。
(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3$
(5)$x^4+y^4$
(6)$x^5+y^5$
$x=\sqrt5+2$のとき、次の値を求めよ。
(1)$x+\frac{1}{x}$
(2)$x^2+\frac{1}{x^2}$
(3)$x^3+\frac{1}{x^3}$
(4)$x^4+\frac{1}{x^4}$
(5)$x^5+\frac{1}{x^5}$
$\frac{1}{2-\sqrt3}$の整数部分を$a$,少数部分を$b$とする。次の値を求めよ。
(1)$a$
(2)$b$
(3)$a+b+b^2$
$x=\frac{\sqrt5+2}{\sqrt5-2}$
$y=\frac{\sqrt5-2}{\sqrt5+2}$ のとき、次の値を求めよ。
(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3$
(5)$x^4+y^4$
(6)$x^5+y^5$
$x=\sqrt5+2$のとき、次の値を求めよ。
(1)$x+\frac{1}{x}$
(2)$x^2+\frac{1}{x^2}$
(3)$x^3+\frac{1}{x^3}$
(4)$x^4+\frac{1}{x^4}$
(5)$x^5+\frac{1}{x^5}$
$\frac{1}{2-\sqrt3}$の整数部分を$a$,少数部分を$b$とする。次の値を求めよ。
(1)$a$
(2)$b$
(3)$a+b+b^2$
投稿日:2018.04.04