素数判定 - 質問解決D.B.(データベース)

素数判定

問題文全文(内容文):
$ 42^{19}+19^{42}$は素数か?
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 42^{19}+19^{42}$は素数か?
投稿日:2022.03.15

<関連動画>

慈恵医大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数$P$は素数、$a,b,c$自然数
$a$は素数

$a(ab-p^2)=C^2,b \leqq 2C$を満たす

(1)
$(a,b,c)$の組の個数を$P$を用いて表せ

(2)
$a,b,c$の最大公約数1となるような$(a,b,c)$の組の個数を$P$で表せ

出典:2017年東京慈恵会医科大学附属病院 過去問
この動画を見る 

一橋大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$(a,b,c)$の組を求めよ。
但し$a$は奇数
$a^4=b^2+2^c$

出典:2018年一橋大学 過去問
この動画を見る 

大阪市立大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
20216大阪市立大学過去問題
x,y整数 n自然数
$x^2+y^2$が$3^{2n-1}$の倍数ならx,yともに$3^n$の倍数であることを示せ
①n=1のとき
②n=2のとき
③すべての自然数n
この動画を見る 

一橋の問題をちょっと変えてみた

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$正の整数
$100m^2-49n^2=20!$を満たす$(m,n)$の組は何組?
この動画を見る 

綺麗な数字の並びの平方数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
平方数であることを示せ.
$\underbrace{277 + \cdots + 7}_{n個}
\underbrace{88 + \cdots + 89}_{ n+1個}$
この動画を見る 
PAGE TOP