素数判定 - 質問解決D.B.(データベース)

素数判定

問題文全文(内容文):
$ 42^{19}+19^{42}$は素数か?
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 42^{19}+19^{42}$は素数か?
投稿日:2022.03.15

<関連動画>

福田のおもしろ数学302〜ベルトランの仮説を利用したn!の約数に関する性質

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$n$を3以上の整数とし、$n!$の正の約数を小さい方から$1=d_1\lt d_2\lt \cdots \lt d_k = n!$とする。$d_2-d_1\leqq d_3-d_2 \leqq \cdots \leqq d_k-d_{k-1}$が成り立つような$n$をすべて求めよ。
この動画を見る 

琉球大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#琉球大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
pは素数であり,nを自然数とする.
$f(n)=n^p-n,f(n+1)-f(n)$はpの倍数であることを示せ.

琉球大過去問
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第2問〜条件を満たすm個の2次関数の積でできる2m次方程式の異なる解の総和

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}\ p,q$を相異なる素数とする。次の3条件を満たすxの2次式f(x)を考える。
・係数はすべて整数1で$x^2$の係数は1である。
・$f(1)=pq$である。
・方程式$f(x)=0$は整数解をもつ。
以下の問いに答えよ。
(1)$f(x)$をすべて求めよ。
(2)(1)で求めたものを$f_1(x),f_2(x),\ldots,f_m(x)$とする。2m次方程式
$f_1(x)×f_2(x)×\ldots×f_m(x)=0$
の相異なる解の総和は$p,q$によらないことを示せ。

2022早稲田大学理工学部過去問
この動画を見る 

兵庫県立大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$48n+3=m^2$を満たす整数$(m,n)$は存在しないことを示せ.

2021兵庫県立大過去問
この動画を見る 

英国数学オリンピック 高校入試レベルの問題

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
すべてのxで次の式が成り立つ整数(a,b,c)をすべて求めよ.
$(x-10)(x-a)+1=(x+a)(x+c)$

英国数学オリンピック過去問
この動画を見る 
PAGE TOP