【数Ⅰ】中高一貫校問題集3(論理・確率編)10:集合と命題:集合:要素の決定 - 質問解決D.B.(データベース)

【数Ⅰ】中高一貫校問題集3(論理・確率編)10:集合と命題:集合:要素の決定

問題文全文(内容文):
A={2,4,x-1},B={3,2x-y-1},C={2,2x+z-2}とする。
B⊂A、B=Cが成り立つとき、x,y,zの値を求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:15 問題解説
2:02 名言

単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材: #TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A={2,4,x-1},B={3,2x-y-1},C={2,2x+z-2}とする。
B⊂A、B=Cが成り立つとき、x,y,zの値を求めよう。
投稿日:2021.08.31

<関連動画>

必要条件と十分条件【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x,y,a,b$は実数とする。
次の[ア]~[ク]に当てはまるものを下の⓪~③の中から選べ。
ただし、同じものを繰り返しで選んでもよい。
(1)$x=2$は、$x^2-x-2=0$であるための[ア]。
(2)$\triangle ABC \sim \triangle PQR$であるための[イ]
(3)$ab+1=a+b$は、$a=1$または$b=1$であるための[ウ]
(5)$xy-x-y+1$
(6)$2a^2b-3ab+a-2b-2$

(6)$|a| \lt 1$かつ$|b| \lt 1$は、$ab+1 \gt a+b$であるための[カ]
(7)$xy(y-1)=0$であることは$x=y(y-1)=0$であるための[キ]
(8)$x^2y^2+(y-1)^2=0$であることは$x=y(y-1=0)$であるための[ク]
この動画を見る 

福田のわかった数学〜高校1年生053〜図形の計量(4)三角形の成立条件と最大角

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(4)
三辺の長さが$x^2+x+1, -2x-1, x^2+2x$である三角形の最大角を求めよ。
この動画を見る 

整数問題(類・東工大)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを自然数とする.
$a_n=19^n+(-1)^{n-1}・3^{6n-5}$
すべての$a_n$を割り切る素数をすべて求めよ.

東工大(類)過去問
この動画を見る 

2次方程式の入試問題!絶対に落としたくない問題です【島根大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a$を実数とする。2次方程式$x^2+2ax+(a-1)=0$の解を$\alpha,\beta$とする。

(1)$\alpha$と$\beta$は異なる実数であることを示せ。

(2)$\alpha$と$\beta$のうち,少なくとも1つは負であることを示せ。

(3)$\alpha≦0,\beta≦0$であるとき,$\alpha^2+\beta^2$の最小値を求めよ。

島根大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題093〜中央大学2020年度理工学部第5問〜円周上の点と三角形五角形の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#微分法と積分法#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 原点Oを中心とする半径1の円周上に2点
Q($\cos a$, $\sin a$), R($\cos(a+b), \sin(a+b)$)
をとる。ただし、a, bはa >0,b >0, a +b<$\frac{\pi}{2}$を満たす。また、点Qからx軸へ下ろした垂線の足を点Pとし、点Rからy軸へ下した垂線の足を点Sとする。
$\triangle$OPQの面積と$\triangle$ORSの面積の和をA, 五角形OPQRSの面積をBとおく。
(1)Aをaとbで表せ。
(2)bを固定して、aを0<a<$\frac{\pi}{2}$-bの範囲で動かすとき、Aがとりうる値の範囲をbで表し、Aが最大値をとるときのaの値をbで表せ。
(3)Bはa=$\frac{\pi}{8}$, b=$\frac{\pi}{4}$のときに最大値をとることを示せ。

2020中央大学理工学部過去問
この動画を見る 
PAGE TOP