【高校数学】2次関数の最大最小の応用~文章になるだけ~ 2-5【数学Ⅰ】 - 質問解決D.B.(データベース)

【高校数学】2次関数の最大最小の応用~文章になるだけ~ 2-5【数学Ⅰ】

問題文全文(内容文):
1⃣
幅20cmの金属板を、動画内の図のように、両端から等しい長さだけ直角に折り曲げて、
断面が長方形状の水路を作る。
このとき、断面積が最大になるようにするためには、端から何cmのところで折り曲げれば
よいか。また、その断面積の最大値を求めよ。


2⃣
直角を挟む2辺の長さの和が8である直角三角形のうち、斜辺の長さが 最小である直角三角形
の3辺の長さを求めよ。
チャプター:

00:00 はじまり

00:35 具体例一つ目

04:14 具体例二つ目

09:47 まとめ

10:02 まとめノート

単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
幅20cmの金属板を、動画内の図のように、両端から等しい長さだけ直角に折り曲げて、
断面が長方形状の水路を作る。
このとき、断面積が最大になるようにするためには、端から何cmのところで折り曲げれば
よいか。また、その断面積の最大値を求めよ。


2⃣
直角を挟む2辺の長さの和が8である直角三角形のうち、斜辺の長さが 最小である直角三角形
の3辺の長さを求めよ。
投稿日:2020.12.01

<関連動画>

17神奈川県教員採用試験(数学:1番 式変形)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣$x=\frac{3+\sqrt{13}}{2}$のとき
$x^3-\frac{1}{x^3}$を求めよ。
この動画を見る 

三角比の相互関係と符号の決め方について解説(数学Ⅰ)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$90^{ \circ } \lt \alpha \lt 180^{ \circ }$で$\sin\alpha=\displaystyle \frac{2}{5}$のとき、$\cos\alpha,\tan\alpha$の値を求めよ。
この動画を見る 

福田の数学〜上智大学2021年理工学部第2問(1)〜条件を満たす関数と命題の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)実数全体で定義され、実数の値をとる関数$f(x)$に対する次の条件$p$を考える。
$p:「K以上の全ての実数xに対してf(x) \geqq 1」$が成り立つような実数Kが存在する。
$(\textrm{i})$次に挙げた関数$(\textrm{a})~(\textrm{d})$のそれぞれについて、pを満たすならばo、pを
満たさないならばxをマークせよ。
$(\textrm{a})f(x)=xe^{-x}  (\textrm{b})f(x)=\frac{2x^2+1}{x^2+1} (\textrm{c})f(x)=x+\sin x (\textrm{d})f(x)=x\sin x$
$(\textrm{ii})$次の条件がpの否定になるように、$\boxed{\ \ あ\ \ }~\boxed{\ \ え\ \ }$のそれぞれの選択肢から、
あてはまるものを選べ。
・$「\boxed{\ \ あ\ \ }\ \boxed{\ \ い\ \ }$実数に対して$\boxed{\ \ う\ \ }」が\boxed{\ \ え\ \ }$

$\boxed{\ \ あ\ \ }$の選択肢$:(\textrm{a})K$以上の  $(\textrm{b})K$未満の
$\boxed{\ \ い\ \ }$の選択肢:$(\textrm{a})$すべての  $(\textrm{b})$ある
$\boxed{\ \ う\ \ }$の選択肢$:(\textrm{a})f(x) \geqq 1  (\textrm{b})f(x) \lt 1$
$\boxed{\ \ え\ \ }$の選択肢$:(\textrm{a})$どんな実数Kについても成り立つ  $\\(\textrm{b})$成り立つような実数Kが存在する 
$(\textrm{iii})$関数$f(x)$に対して、$g(x)=2f(x)$で関数$g(x)$を定める。次に挙げた命題$(\textrm{A})~(\textrm{D})$
のそれぞれについて、正しければoを、正しくなければxを、マークせよ。
$(\textrm{A})f(x)$が$p$を満たすならば、$g(x)$も$p$を満たす。
$(\textrm{B})g(x)$が$p$を満たすならば、$f(x)$もpを満たす。
$(\textrm{C})f(x)$が$p$を満たさないならば、$g(x)$もpを満たさない。
$(\textrm{D})f(x)$がpを満たさないならば、$g(x)$も$p$を満たす。

2021上智大学理工学部過去問
この動画を見る 

光文社新書「中学の知識でオイラー公式がわかる」Vol11 sinの微分

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
sinの微分解説動画です
$\displaystyle \lim_{ h \to o } \displaystyle \frac{\sin h}{h} =1$
この動画を見る 

数弱私文の早大生バンカラジオにヨビノリたくみが「優しく」三角関数の基本を教えるよ。余弦定理

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)
指導講師: 鈴木貫太郎
問題文全文(内容文):
三角関数の基本解説動画です
この動画を見る 
PAGE TOP