大学入試問題#106 明治薬科大学(2004) 整数問題 - 質問解決D.B.(データベース)

大学入試問題#106 明治薬科大学(2004) 整数問題

問題文全文(内容文):
$l,m,n$:自然数
$l \leqq m \leqq n$
$\displaystyle \frac{1}{l}+\displaystyle \frac{1}{m}+\displaystyle \frac{1}{n}=\displaystyle \frac{3}{2}$をみたす組$(l,m,n)$をすべて求めよ。

出典:2004年明治薬科大学 入試問題
チャプター:

04:30~解答のみ掲載

単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$l,m,n$:自然数
$l \leqq m \leqq n$
$\displaystyle \frac{1}{l}+\displaystyle \frac{1}{m}+\displaystyle \frac{1}{n}=\displaystyle \frac{3}{2}$をみたす組$(l,m,n)$をすべて求めよ。

出典:2004年明治薬科大学 入試問題
投稿日:2022.02.02

<関連動画>

2024一橋大後期数学 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$正の整数
$m^2-n^2=10!$を満たす$(m,n)$の組は何組?

出典:2024年一橋大学後期数学 過去問
この動画を見る 

割り算の復習をしよう

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$5^{2024}$÷1000
あまりを求めよ
この動画を見る 

2020年問題 2020整数問題 その2

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
連続$n$個の自然数の和が$2020$となる$n$と先頭の自然数$a$
$(a,n)$の組を全て求めよ
この動画を見る 

整数問題 早稲田実業

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$c^2+4a^2+b^2 =65$を満たす正の整数a,b,cの組を求めよ。

早稲田実業学校
この動画を見る 

高校入試の難しい整数問題  奈良学園

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
①~④をすべて満たす自然数a,b,c,dを求めよ。
①acd=720
②bcd=1512
③aとbの最大公約数は3である
④c+d=10(c$\geqq$d)

奈良学園高等学校
この動画を見る 
PAGE TOP