問題文全文(内容文):
◎次の2次関数に最大値、最小値があれば、それを求めよう。
①$y=x^2-4x+5(-1 \leqq x \leqq 3)$
②$y=-2x^2-4x+1(0 \leqq x \leqq 2)$
③$y=2x^2-3x+4(-1 \leqq x \leqq 2)$
④$y=x^2+6x-5$
◎次の2次関数に最大値、最小値があれば、それを求めよう。
①$y=x^2-4x+5(-1 \leqq x \leqq 3)$
②$y=-2x^2-4x+1(0 \leqq x \leqq 2)$
③$y=2x^2-3x+4(-1 \leqq x \leqq 2)$
④$y=x^2+6x-5$
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の2次関数に最大値、最小値があれば、それを求めよう。
①$y=x^2-4x+5(-1 \leqq x \leqq 3)$
②$y=-2x^2-4x+1(0 \leqq x \leqq 2)$
③$y=2x^2-3x+4(-1 \leqq x \leqq 2)$
④$y=x^2+6x-5$
◎次の2次関数に最大値、最小値があれば、それを求めよう。
①$y=x^2-4x+5(-1 \leqq x \leqq 3)$
②$y=-2x^2-4x+1(0 \leqq x \leqq 2)$
③$y=2x^2-3x+4(-1 \leqq x \leqq 2)$
④$y=x^2+6x-5$
投稿日:2014.08.05