【高校数学】数Ⅰ-42 2次関数の最大・最小 ① - 質問解決D.B.(データベース)

【高校数学】数Ⅰ-42 2次関数の最大・最小 ①

問題文全文(内容文):
◎次の2次関数に最大値、最小値があれば、それを求めよう。
①$y=x^2-4x+5(-1 \leqq x \leqq 3)$
②$y=-2x^2-4x+1(0 \leqq x \leqq 2)$
③$y=2x^2-3x+4(-1 \leqq x \leqq 2)$
④$y=x^2+6x-5$
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2次関数に最大値、最小値があれば、それを求めよう。
①$y=x^2-4x+5(-1 \leqq x \leqq 3)$
②$y=-2x^2-4x+1(0 \leqq x \leqq 2)$
③$y=2x^2-3x+4(-1 \leqq x \leqq 2)$
④$y=x^2+6x-5$
投稿日:2014.08.05

<関連動画>

【数Ⅰ】【2次関数】2次関数の文章題3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$AB=6\sqrt{3}、CA=9、∠C=90°$の三角形$ABC$がある。
点$P$は頂点$C$から$A$まで辺$CA$上を毎秒3の速さで進む。
点$Q$は$P$と同時に頂点$B$を出発し、頂点$C$まで辺$BC$上を毎秒$\sqrt{3}$の速さで進む。
この$P,Q$間の距離の最小値を求めよ。

この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学を数楽に
この動画を見る 

福田のわかった数学〜高校1年生017〜2次関数の最大最小

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 2次関数の最大最小
$a+b+c=1$ のとき
$a^2+b^2+c^2$の最小値を求めよ。
この動画を見る 

対数と不等式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{k-1}{k}\lt \log_{10}7 \lt \dfrac{k}{k+1}$
自然数kを求めよ.
この動画を見る 

【高校数学】数Ⅰ-21 絶対値を含む方程式・不等式①(基本編)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$a \gt 0$のとき、$|x|=a$の解は①____、$|x|\lt a$の解は②____、$|x| \gt a$の解は③____となる。

④$|x+2|=5$
⑤$|x+3|\lt 7$
⑥$|x+4|\gt 3$
⑦$|3x-1|\geqq 5$
⑧$|5x-3| \leqq 2$
⑨$|6-x| \gt 4$
この動画を見る 
PAGE TOP