2023高校入試解説26問目 √の計算 早稲田本庄最初の一問 - 質問解決D.B.(データベース)

2023高校入試解説26問目 √の計算 早稲田本庄最初の一問

問題文全文(内容文):
$\{ \frac{\sqrt2 + \sqrt3 -\sqrt5}{\sqrt{18}(\sqrt2 -1)} \}^2 \div
\{ \frac{\sqrt2(\sqrt8 + 2 )}{\sqrt{2}+ \sqrt3 + \sqrt5)} \}^2$

2023早稲田大学 本庄高等学院
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\{ \frac{\sqrt2 + \sqrt3 -\sqrt5}{\sqrt{18}(\sqrt2 -1)} \}^2 \div
\{ \frac{\sqrt2(\sqrt8 + 2 )}{\sqrt{2}+ \sqrt3 + \sqrt5)} \}^2$

2023早稲田大学 本庄高等学院
投稿日:2023.02.09

<関連動画>

福田の数学〜東京理科大学2024創域理工学部第1問(3)〜条件を満たす点の個数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,b$を正の実数とする。座標平面上に点$\textrm{A}(a,1)$をとり、自然数$n=1,2,3,\cdots$に対して点$\textrm{P}_n(n,0)$をとる。集合$U$を次で定める。
$U=\{n|n$は自然数かつ2点$\textrm{A}, \textrm{P}_n$間の距離は$b$以下$\}$
(a) $a=2$とする。$b=1$のとき、$U$の要素の個数は?また、$b=\sqrt{3}$のとき、$U$の要素の個数は?
(b) $a=\dfrac72$とする。$b=\sqrt2$のとき、$U$の要素の個数は?また、$b=2\sqrt2$のとき、$U$の要素の個数は?
(c) $b=2$のとき、$U$の要素の個数が2個となる正の整数$a$は?また、$b=5$のとき、$U$の要素の個数が9個となる最小の正の整数$a$は?
この動画を見る 

【数Ⅰ】【データの分析】変量変換1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
変量xのデータの平均値$\bar{x}$が35、分散$S_{x}^2$が16であるとする。この時、次の式によって得られる新しい変量yのデータについて、平均$\bar{y}$,分散$S_{y}^2$,標準偏差$S_{y}$を求めよ。
(1)$y=x-10$
(2)$y=3x$
(3)$y=-\frac{1}{2}x+6$

あるクラスの生徒を対象に100点満点の試験を行ったところ,平均値は68点,分散は36であった。得点調整のため,生徒全員の得点を2.5倍して,更に30点を加えたとき,得点調整後の平均値,分散,標準偏差を求めよ。
この動画を見る 

数学ゴールデン【漫画】で紹介された数オリの問題の解答がなかったから作成してみた。

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#式の計算(整式・展開・因数分解)#数学オリンピック#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \lt x$:実数
$x+\sqrt{ x(x+1) }+\sqrt{ x(x+2) }+\sqrt{ (x+1)(x+2) }=2$を解け。

出典:数学ゴールデン 数学オリンピック
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第1問(4)〜等比数列となる条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (4)数列$\left\{a_n\right\}$の階差数列を$\left\{b_n\right\}$とする。$\left\{b_n\right\}$が初項2、公比$\frac{1}{3}$の等比数列と
なるとき、$\left\{b_n\right\}$の一般項は$b_n=\boxed{\ \ オ\ \ }$である。また、$\left\{a_n\right\}$も等比数列に
なるならば、$a_1=\boxed{\ \ カ\ \ }$である。このとき$\left\{a_n\right\}$の一般項は$a_n=\boxed{\ \ キ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

難しい因数分解やろうぜ【高校数学】

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
難しい因数分解
(1)$a(l^2-c^2)+l(c^2-a^2)+c(a^2-l^2)$

(2)$a^2(b+c)+b^2(c+a)+c^2(a+b)+2abc$

(3)$2x^2+5xy+2y^2-x+y-1$

(4)$a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2)$

(5)$x^2-y^2-zx+yz$

(6)$a(b+c)^2+b(c+a)^2+c(a+b)^2-4abc$
この動画を見る 
PAGE TOP