大学入試問題#565「これは落とせない」 京都帝国大学(1935) #不定積分 - 質問解決D.B.(データベース)

大学入試問題#565「これは落とせない」 京都帝国大学(1935) #不定積分

問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^x-1}{e^x+1}\ dx$

出典:1935年京都帝国大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^x-1}{e^x+1}\ dx$

出典:1935年京都帝国大学 入試問題
投稿日:2023.06.14

<関連動画>

【数Ⅲ】【積分とその応用】不定積分置換積分、部分積分2 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不定積分を求めよ。
(1) $\displaystyle \int \frac{x^2+x+1}{x^2+1}~dx$
(2) $\displaystyle \int \frac{x^4}{x^2-1}~dx$


(1)次の等式が成り立つように、定数$a,b,c$の値を定めよ。
$\dfrac{3x+2}{x(x+1)^2}=\dfrac{a}{x}+\dfrac{b}{x+1}+\dfrac{c}{(x+1)^2}$

(2)不定積分$\displaystyle \int \dfrac{3x+2}{x(x+1)^2}~dx$を求めよ。


次の不定積分を求めよ。
(1) $\displaystyle \int \frac{dx}{x(x^2-1)}$
(2) $\displaystyle \int \frac{dx}{x^2(x+2)}$
(3) $\displaystyle \int \frac{dx}{x(x^2+1)}$
(4) $\displaystyle \int \frac{x^2+1}{x^4-5x^2+4}~dx$
(5) $\displaystyle \int \frac{3x+2}{x(x+1)^3}~dx$
(6) $\displaystyle \int \frac{x^4}{x^3-3x+2}~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int \frac{dx}{\sqrt{x+1}-\sqrt x}$
(2) $\displaystyle \int \frac{x}{\sqrt{3x+4}-2}~dx$
この動画を見る 

大学入試問題#573「沼にはまらないように!!」 京都帝国大学(1937) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x(a^3+x^3)}$

出典:1937年京都帝国大学 入試問題
この動画を見る 

#高専#不定積分_18#元高専教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int\displaystyle \frac{2x+1}{(x^2+x+5)^3} dx$

出典:国立高等専門学校機構
この動画を見る 

大学入試問題#89 信州大学(1988) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int (x^2+a^2)^{-\frac{3}{2}}dx$
$a \neq 0$を計算せよ。

出典:1988年信州大学 入試問題
この動画を見る 

大学入試問題#186 京都大学医学部(大正15年) 不定積分 たぶん難問

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{(x+1)\sqrt{ x^2-1 }}$を計算せよ。

出典:大正15年京都大学医学部 入試問題
この動画を見る 
PAGE TOP