問題文全文(内容文):
◎次の等式がx,yの恒等式となるように、定数a、b、cの値を定めよう。
①$(a+2b)x+(2a+3b-3)y+(b-3c)=0$
②$x^2+y^2=a(x+y)^2+b(x-y)^2$
◎次の等式がx,yの恒等式となるように、定数a、b、cの値を定めよう。
①$(a+2b)x+(2a+3b-3)y+(b-3c)=0$
②$x^2+y^2=a(x+y)^2+b(x-y)^2$
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の等式がx,yの恒等式となるように、定数a、b、cの値を定めよう。
①$(a+2b)x+(2a+3b-3)y+(b-3c)=0$
②$x^2+y^2=a(x+y)^2+b(x-y)^2$
◎次の等式がx,yの恒等式となるように、定数a、b、cの値を定めよう。
①$(a+2b)x+(2a+3b-3)y+(b-3c)=0$
②$x^2+y^2=a(x+y)^2+b(x-y)^2$
投稿日:2015.04.25