場合分けは何パターン?多くの絶対値を含んだ問題【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

場合分けは何パターン?多くの絶対値を含んだ問題【京都大学】【数学 入試問題】

問題文全文(内容文):
nは整数
|n-1|+|n-2|+...+|n-100|の最小値を求めよ

京都大学1961年過去問
チャプター:

00:04 問題文
00:31 解答・解説
07:37 次回の問題

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nは整数
|n-1|+|n-2|+...+|n-100|の最小値を求めよ

京都大学1961年過去問
投稿日:2023.03.27

<関連動画>

福田の数学〜早稲田大学2022年理工学部第2問〜条件を満たすm個の2次関数の積でできる2m次方程式の異なる解の総和

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ p,qを相異なる素数とする。次の3条件を満たすxの2次式f(x)を考える。\\
・係数はすべて整数1でx^2の係数は1である。\hspace{100pt}\\
・f(1)=pqである。\hspace{193pt}\\
・方程式f(x)=0は整数解をもつ。\hspace{135pt}\\
以下の問いに答えよ。\hspace{200pt}\\
\\
(1)f(x)をすべて求めよ。\hspace{170pt}\\
(2)(1)で求めたものをf_1(x),f_2(x),\ldots,f_m(x)とする。2m次方程式\hspace{3pt}\\
f_1(x)×f_2(x)×\ldots×f_m(x)=0\hspace{100pt}\\
の相異なる解の総和はp,qによらないことを示せ。\hspace{60pt}
\end{eqnarray}
この動画を見る 

防衛大・三重大 漸化式 三次関数 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#数列#漸化式#防衛大学校#数学(高校生)#三重大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
防衛大学過去問題
$S_n$は初項からn項までの和
$S_n=1-(2n^2+n-1)a_n$
(1)$a_n$をnを用いて表せ。
(2)$\displaystyle\sum_{k=1}^{20}a_n$

三重大学過去問題
$f(x)=2x^3-9x^2+12x$と$y=kx$が2点のみを共有するkの値
この動画を見る 

福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 複素数からなる数列{z_n}を、次の条件で定める。\hspace{150pt}\\
z_1=0,\ \ \ z_{n+1}=(1+i)z_n-i \ \ \ (i=1,2,3, \ \ ...)\\
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。\\
(1)z_2=\boxed{\ \ ツ \ \ }+\boxed{\ \ ツ \ \ }\ i, \ \ \ z_3=\boxed{\ \ ト \ \ }+\boxed{\ \ ナ \ \ }\ i,\ \ \ z_4=\boxed{\ \ 二 \ \ }+\boxed{\ \ ヌ \ \ }\ i \ \ である。\\
(2)r \gt 0,\ 0 \leqq θ \lt 2\pi を用いて、1+i=r(\cos θ+i\sin θ)のように1+iを極形式で\\
表すとき、r=\sqrt{\boxed{\ \ ネ \ \ }},\ θ=\frac{\boxed{\ \ ノ \ \ }}{\boxed{\ \ ハ \ \ }}\piである。\\
(3)すべての正の整数nに対する\triangle PA_nA_{n+1}が互いに相似になる点Pに対応する\\
複素数は、\boxed{\ \ ヒ\ \ }+\boxed{\ \ フ \ \ }\ iである。\\
(4)|z_n| \gt 1000となる最小のnはn=\boxed{\ \ へ \ \ }である。\\
(5)A_{2022+k}が実軸上にある最小の正の整数kはk=\boxed{\ \ ホ \ \ }である。
\end{eqnarray}
この動画を見る 

福田の数学〜まったく手が出ないときの対処法〜慶應義塾大学2023年総合政策学部第4問前編〜格子点を内包する軌道の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
平面上でx座標もy座標も整数である点を格子点という。 m とnを正の整数とするとき、xy平面上に点 $P_{ij}$(i = 1 , 2 ,・・・,j=1,2,・・・,n)を格子点(i,j)に置く。次にこれらの点を囲むようにA ( 0.5 , 0.5 ), B ( m + 0.5 , 0.5 ), C ( m + 0.5 ,n+ 0.5 ),D ( 0.5 ,n+ 0.5 )を頂点とする長方形を描く。
長方形ABCD の内側に以下のように「軌道」を作図する。
l. $P_{ij}$の外周の点(i= 1 またはi= m またはj= 1 またはj=nの点)を選び、その点から 0.5 の距離だけはなれた長方形 ABCD 上の点を軌道の起点とし、基点の置かれた辺と 45°の角度をなす直線の軌道を長方形 ABCD 内に描く。
2. 軌道が長方形 ABCD の別の辺にぶつかった場合、軌道を直角に曲げる。この操作を繰り返すと、軌道はいずれ起点に戻るので、そこで描くのを停止すると、一筆書きで閉じた 1 つの軌道が得られる。
3.ステップ 1 と 2 で描いた軌道の内側にすべての点 $P_{i,j}$が含まれているようなら、作図を終了する。軌道の外にある点が残っている場合、まだ軌道の外にある外周の点 $P_{i,j}$ を選び、ステップ 1 以降の操作を繰り返す。すべての点 $P_{i,j}$を軌道内に納めるために必要な最小の軌道の数を T(m,n)と書くことにする。右の図は T(4,2)= 2 であることを示している。(異なる軌道を破線と点線で描き分けた)
(l) T ( 4 , 4 )は$\fbox{ア}$である。
( 2 ) T ( 15 , 5 )は$\fbox{イ}$である。
( 3 ) T ( 2023 , 1015 )は$\fbox{ウ}$である。
( 4 )下の 12 個の T ( m ,n)の値の最大値は$\fbox{エ}$であり、最大値を取るものが$\fbox{オ}$個ある。T(2,1), T(3, 2 ), T(8, 5 ), T(6, 3 ), T(9, 6 ), T ( 24 , 15 ), T ( 63 , 39 ), T ( 165 ,102 ),T ( 699 , 267 ), T ( 2961 ,1131), T ( 7752 , 4791) , T ( 32838 , 12543 )
この動画を見る 

福田の数学〜神戸大学2022年理系第1問〜3項間の漸化式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 数列\left\{a_n\right\}をa_1=1,a_2=2,a_{n+2}=\sqrt{a_{n+1}・a_n} (n=1,2,3,\ldots)によって定める。\\
以下の問いに答えよ。\\
(1)全ての自然数nについてa_{n+1}=\frac{2}{\sqrt{a_n}}が成り立つことを示せ。\\
(2)数列\left\{b_n\right\}をb_n=\log a_n (n=1,2,3,\ldots)によって定める。\\
b_nの値をnを用いて表せ。\\
(3)極限値\lim_{n \to \infty}a_nを求めよ。
\end{eqnarray}
この動画を見る 
PAGE TOP