早稲田 学習院 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

早稲田 学習院 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
学習院大学過去問題
$x^3+y^3=3xy$ (x,y実数)
x+yのとりうる範囲

早稲田大学過去問題
$a_1$~$a_n$整数
$x^n+a_1x^{n-1}+a_2x^{n-2}+\cdots+a_{n-1}x+a_n=0$
整数係数のn次方程式、解が有理数ならその解は整数である。
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
学習院大学過去問題
$x^3+y^3=3xy$ (x,y実数)
x+yのとりうる範囲

早稲田大学過去問題
$a_1$~$a_n$整数
$x^n+a_1x^{n-1}+a_2x^{n-2}+\cdots+a_{n-1}x+a_n=0$
整数係数のn次方程式、解が有理数ならその解は整数である。
投稿日:2018.08.18

<関連動画>

超良問⁉️だと思う整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$a,n$をすべて求めよ.
$a^{n+1}-(a+1)^n=2001$
この動画を見る 

東海大(医)えっ!そんなんでいいの?

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$n^3+100$が$n+10$で割り切れるような最大の自然数$n$を求めよ.

東海大(医)過去問
この動画を見る 

整数問題の難問!2つの解法を紹介【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2=yz+7 \\
y^2=zx+7 \\
z^2=xy+7
\end{array}
\right.
\end{eqnarray}$

整数$(x,y,z)$を求めよ.

一橋大過去問
この動画を見る 

素数を求めよ お茶の水女子大付属

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
123123のように3ケタの同じ整数を2つ並べて6ケタの整数を作るとある素数で必ず割り切れる。
この素数をすべて求めよ。

お茶の水女子大学附属高等学校
この動画を見る 

素数を扱え!整数問題【数学 入試問題】【千葉大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$p$は奇数である素数とし、$N=(p+1)(p+3)(p+5)$とおく。
(1)$N$は$48$の倍数であることを示せ。
(2)$N$は$144$の倍数になるような$p$の値を小さい順に$3$つ求めよ。

千葉大過去問
この動画を見る 
PAGE TOP