福田のわかった数学〜高校3年生理系068〜微分(13)関数方程式 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系068〜微分(13)関数方程式

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(13) 関数方程式\\
x \gt 0 で定義された微分可能な関数f(x)において、f(xy)=f(x)+f(y)\\
が正の数x,\ yに対して常に成り立ち、f'(1)=1とする。\\
\\
(1)f(1) を求めよ。\\
(2)f'(x)=\frac{1}{x} を示せ。
\end{eqnarray}
単元: #微分とその応用#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(13) 関数方程式\\
x \gt 0 で定義された微分可能な関数f(x)において、f(xy)=f(x)+f(y)\\
が正の数x,\ yに対して常に成り立ち、f'(1)=1とする。\\
\\
(1)f(1) を求めよ。\\
(2)f'(x)=\frac{1}{x} を示せ。
\end{eqnarray}
投稿日:2021.08.27

<関連動画>

数学「大学入試良問集」【18−10 定数分離と微分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名城大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{e^x}{x-1}$について、次の問いに答えよ。
(1)曲線$y=f(x)$のグラフの概形をかけ。
(2)定数$k$に対して、方程式$e^x=k(x-1)$の異なる実数解の個数を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系076〜平均値の定理(4)数列の極限の問題

アイキャッチ画像
単元: #数列#漸化式#関数と極限#微分とその応用#数列の極限#接線と法線・平均値の定理#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 平均値の定理(4)\hspace{120pt}\\
微分可能な関数f(x)がf(1)=1, 0 \lt f'(x) \leqq \frac{1}{2}を満たしている。\\
a_{n+1}=f(a_n)で定義される数列\left\{a_n\right\}について、\lim_{n \to \infty}a_n=1であることを示せ。
\end{eqnarray}
この動画を見る 

福田の1.5倍速演習〜合格する重要問題056〜神戸大学2017年度文系第1問〜3次関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ tを正の実数とする。$f(x)=x^3+3x^2-3(t^2-1)x+2t^3-3t^2+1$とおく。
以下の問いに答えよ。
(1)2t^3-3t^2+1 を因数分解せよ。
(2)$f(x)$が極小値0をもつことを示せ。
(3)$-1 \leqq x \leqq 2$における$f(x)$の最小値$m$と最大値$M$をtの式で表せ。

2017神戸大学文系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系096〜不等式の証明(3)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(3)\\
\sqrt{ab} \lt \frac{b-a}{\log b-\log a} \lt \frac{a+b}{2} (0 \lt a \lt b)を証明せよ。
\end{eqnarray}
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第3問〜指数不等式の領域が表す面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 以下の問いに答えよ。\\
(1)連立不等式x \geqq 2, 2^x \leqq x^y \leqq x^2の表す領域をxy平面上に図示せよ。\\
ただし、自然対数の底eが2 \lt e \lt 3を満たすことを用いてよい。\\
(2)a \gt 0に対して、連立不等式2 \leqq x \leqq 6, (x^y-2^x)(x^a-x^y) \geqq 0\\
の表すxy平面上の領域の面積をS(a)とする。\\
S(a)を最小にするaの値を求めよ。
\end{eqnarray}

2022北海道大学理系過去問
この動画を見る 
PAGE TOP