【数Ⅰ】【2次関数】2次関数の最大最小場合分け2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【2次関数】2次関数の最大最小場合分け2 ※問題文は概要欄

問題文全文(内容文):
aは定数とする。関数$y=3x^2-6ax+2 (0\leqq x\leqq 2)$について、次の問いに答えよ。
(1) 最小値を求めよ。
(2) 最大値を求めよ。
チャプター:

0:00 OP
0:03 導入
1:30 (1)解説
3:33 (2)解説
5:10 今回の問題で注意すべきこと

単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは定数とする。関数$y=3x^2-6ax+2 (0\leqq x\leqq 2)$について、次の問いに答えよ。
(1) 最小値を求めよ。
(2) 最大値を求めよ。
投稿日:2024.11.23

<関連動画>

九州大 三次方程式と無理数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\cos2 0^{ \circ }+i \sin20^{ \circ }$
$\alpha=z+\bar{ z }$

(1)
$\alpha$を解に持つ整数、係数の3次方程式を求めよ

(2)
(1)で求めた方程式は相異なる3つの実数解をもち、それらはすべて無理数となることを示せ

(3)
$\alpha$を解にもつ有理数係数の2次方程式はないことを示せ

出典:2000年九州大学 過去問
この動画を見る 

同志社大・早稲田(商) 式の計算 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
同志社大学過去問題
$x+y+z=3 , \quad \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}$のとき
(1)$(x-3)(y-3)(z-3)$の値
(2)$x^3+y^3+z^3$の値

早稲田大学過去問題
$x^3+\frac{1}{x^3}=52$を満たす$x^4+\frac{1}{x^4}$の値
この動画を見る 

「二次不等式の解の配置①」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次方程式$x^2-2ax-2a+3=0$が次のような解をもつとき、定数$a$の値の範囲を求めよ。
(1)異なる2つの正の解をもつ
(2)異なる2つの負の解をもつ
(3)$x \lt -2$の範囲に異なる2解をもつ
(4)$-1 \leqq x \leqq 2$の範囲に異なる2つの解をもつ
(5)正の解と負の解をそれぞれ1つずつもつ
(6)$0 \lt x \lt 2,2 \lt x \lt 4$の範囲に1つずつ解をもつ
(7)$-2 \leqq x \leqq 1,3 \leqq x \leqq 5$の範囲に1つずつ解をもつ
(8)2解のうちの1つを$1 \lt x \lt 5$の範囲にもつ
(9)$-4 \leqq x \leqq -2$の範囲に解をもつ
この動画を見る 

【数学Ⅰ/高1の予習】展開公式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$(2x+y-3)^2$を展開せよ
この動画を見る 

√の中に8がいっぱい!!

アイキャッチ画像
単元: #数Ⅰ#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#指数関数
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{8\sqrt{8\sqrt8}}=2$
この動画を見る 
PAGE TOP