大阪大の問題の背景 特に文系の人見てください - 質問解決D.B.(データベース)

大阪大の問題の背景 特に文系の人見てください

問題文全文(内容文):
$\cos\dfrac{2}{7}\pi,\cos\dfrac{4}{7}\pi,\cos\dfrac{6}{7}\pi$を解にもつ3次方程式
$x^3+ax^2+bx+c=0$を求めよ.
ただし,$z^7=1$とする.

2022大阪大過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{2}{7}\pi,\cos\dfrac{4}{7}\pi,\cos\dfrac{6}{7}\pi$を解にもつ3次方程式
$x^3+ax^2+bx+c=0$を求めよ.
ただし,$z^7=1$とする.

2022大阪大過去問
投稿日:2022.03.02

<関連動画>

二次方程式の応用

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2-2x-5=0$の解をp,q (p<q)
$x^2-2x-7=0$の解をr,s (r<s)
(p-r)(p-s)(r-p)(r-q)=?
この動画を見る 

複素数 学習院大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z$は複素数であり,$\dfrac{z-1-3i}{z-2}$が純虚数である.
$\vert z \vert$の最大値と最小値を求めよ.

学習院大過去問
この動画を見る 

答えの数値で安心する問題 聖マリアンナ医科大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#聖マリアンナ医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+\sqrt[3]{4}X+4=0$
の3つの解をα,β,γとする
$(10\sqrt[3]{2}-α)(10\sqrt[3]{2}-β)(10\sqrt[3]{2}-γ)$
の値を求めよ。

聖マリアンナ医科大過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第1問(5)〜解と係数の関係と式の値の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(5)iを虚数単位とし、$\alpha=\frac{1-\sqrt3i}{4}$とする。このとき、
$a,b$を実数とする2次方程式$x^2+ax+b=0$の解の1つが$\alpha$であるならば、
$a=\boxed{\ \ ア\ \ },\ b=\boxed{\ \ イ\ \ }$である。
また、$f(x)=4x^4-3x^3+2x^2$とするとき、$f(\alpha)$の値は$\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

ハルハル様の作成問題③ #複素数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$z$:複素数
$a$:実数
$2Z^2+3|Z|Z=a$を解け
この動画を見る 
PAGE TOP