福田のわかった数学〜高校1年生084〜確率(4)さいころの目の最大と最小の確率 - 質問解決D.B.(データベース)

福田のわかった数学〜高校1年生084〜確率(4)さいころの目の最大と最小の確率

問題文全文(内容文):
数学$\textrm{A}$ 確率(4) さいころの目(2)さいころをn回投げて出た目の最大値が5
で最小値が3である確率を求めよ。ただし、$n \geqq 2$とする。
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(4) さいころの目(2)さいころをn回投げて出た目の最大値が5
で最小値が3である確率を求めよ。ただし、$n \geqq 2$とする。
投稿日:2021.12.05

<関連動画>

福田の数学〜一橋大学2022年文系第5問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
中身の見えない2つの箱があり、1つの箱には赤玉2つと白玉1つが入っており、
もう1つの箱には赤玉1つと白玉2つが入っている。どちらかの箱を選び、選んだ
箱の中から玉を1つ取り出して元に戻す、という操作を繰り返す。
(1) 1回目は箱を無作為に選び、2回目以降は、前回取り出した玉が赤玉なら前回
と同じ箱、前回取り出した玉が白玉なら前回とは異なる箱を選ぶ。n回目に赤玉
を取り出す確率$p_n$を求めよ。
(2)1回目は箱を無作為に選び、2回目以降は、前回取り出した玉が赤玉なら前回
と同じ箱、前回取り出した玉が白玉なら箱を無作為に選ぶ。n回目に赤玉を取り
出す確率 $q_n$を求めよ。

2022一橋大学文系過去問
この動画を見る 

場合の数  慶應義塾2021

アイキャッチ画像
単元: #数学(中学生)#数A#場合の数と確率#場合の数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1~20の自然数から異なる4つを選び、小さい順にa,b,c,dとする。
c=8のときa,b,dの選び方は何通り?

2021慶應義塾高等学校
この動画を見る 

【数A】【場合の数】余事象の使い方 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
大中小3個のさいころを投げるとき、次のような場合は何通りあるか
(1)目が全て異なる      (2)少なくとも2個が同じ目
(3)目の積が3の倍数      (4)目の和が奇数     

正四面体の1つの面を下にしておき、1つの辺を軸として3回転がす。2回目
以降、直前にあった場所を通らないようにするとき、次の数を求めよ
(1)転がし方の総数     (2)3回転がした後の正四面体の位置の総数
この動画を見る 

【数A】【場合の数と確率】組み合わせ応用3 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
・右のような街路で、PからQまで行く最短経路のうち、次の場合は何通りあるか。
(1)総数
(2)Rを通る経路
(3)R、Sをともに通る経路
(4)×印の個所を通らない経路

・4桁の自然数nの千の位、百の位、十の位、一の位の数字を、それぞれa,b,c,dとする。次の条件を満たすnは全部で何個あるか。
(1)a>b>c>d
(2)a≧b>c>d
この動画を見る 

数学「大学入試良問集」【5−4 石の移動と確率】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
正三角形の頂点を反時計回りに$A,B,C$と名付け、ある頂点に1つの石が置いてある。
次のゲームを行う。
袋の中に黒玉3個、白玉2個の計5個の球が入っている。
この袋の中を水に2個の球を取り出して元に戻す。
この1回の試行で、もし黒玉2個の場合は反時計回りに、白玉2個の場合は時計回りに隣の頂点に石を動かす。
ただし、白玉1個と黒玉1個の場合には動かさない。
このとき、以下の問いに答えよ。
(1)
1回の試行で、黒玉2個を取り出す確率と、白玉2個を取り出す確率を求めよ。

(2)
最初に石を置いた頂点を$A$とする。
4回の試行を続けた後、石が頂点$C$にある確率を求めよ。
この動画を見る 
PAGE TOP