福田のわかった数学〜高校1年生084〜確率(4)さいころの目の最大と最小の確率 - 質問解決D.B.(データベース)

福田のわかった数学〜高校1年生084〜確率(4)さいころの目の最大と最小の確率

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(4) さいころの目(2)\\
さいころをn回投げて出た目の最大値が5\\
で最小値が3である確率を求めよ。ただし、n \geqq 2とする。
\end{eqnarray}
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(4) さいころの目(2)\\
さいころをn回投げて出た目の最大値が5\\
で最小値が3である確率を求めよ。ただし、n \geqq 2とする。
\end{eqnarray}
投稿日:2021.12.05

<関連動画>

これどれくらいすごいん?

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
7つのサイコロがゾロ目になる確率を計算
この動画を見る 

【理数個別の過去問解説】1999年度大阪大学 数学 理系前期第5問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
一片の長さが4の正方形の紙の表を、図のように一片の長さが1のマス目に16個に区切る。その紙を2枚用意し、AとBの2人に渡す。AとBはそれぞれ渡された紙の2個のマス目を無作為に選んで塗りつぶす。塗りつぶした後、両方の紙を表を上にしてどのように重ね合わせても、塗りつぶされたマス目がどれも重ならない確率を求めよう。ただし、2枚の紙を重ね合わせるときは、それぞれの紙を回転させてもよいが、紙の四隅は合わせることとする。
この動画を見る 

【数A】確率:感覚でわかる反復試行

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
コインを10回投げる問題に関して解説していきます.
この動画を見る 

浜松医大 確率 サイコロ4個・n個 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
浜松医科大学過去問題
(1)4個のサイコロを投げて1,1,2,2のように同じ目がちょうど2個ずつでる確率
(2)n=4,5,6・・・としてn個のサイコロを投げて、少なくとも(n-2)個のサイコロに同じ目がそろって出る確率$P_n$
 また$\displaystyle\lim_{n \to \infty}\frac{P_n+1}{P_n}$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題057〜慶應義塾大学大学2019年度商学部第3問〜グループ分けの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 男子7人、女子5人の12人の中から3人を選んで第1グループを作る。次に、残った人の中から3人を選んで第2グループを作る。
(1)第1グループの男子の数が
0人である確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イウ\ \ }}$
1人である確率は$\displaystyle\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オカ\ \ }}$
2人である確率は$\displaystyle\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}$
3人である確率は$\displaystyle\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シス\ \ }}$
である。

(2)第1グループも第2グループも男子の数が1人である確率は$\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソタ\ \ }}$である。また、第2グループの男子の数が1人である確率は$\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツテ\ \ }}$である。

(3)第2グループの男子の数が1人であるとき、第1グループの男子の数も1人である確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナニ\ \ }}$である。

2019慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP