2024次方程式の解と係数の関係 - 質問解決D.B.(データベース)

2024次方程式の解と係数の関係

問題文全文(内容文):
$x^{2024}+2x^{2023}+3x^{2022}+$$ ……+2024x+2025=0$の$2024$個の解を
$\alpha,\alpha_{2},\alpha_{3}……\alpha_{2024}$とする

$(1-\displaystyle \frac{1}{\alpha_{1}})(1-\displaystyle \frac{1}{\alpha_{2}})……(1-\displaystyle \frac{1}{\alpha_{2024}})$の値を求めよ

出典:OnLineMath Contest
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2024}+2x^{2023}+3x^{2022}+$$ ……+2024x+2025=0$の$2024$個の解を
$\alpha,\alpha_{2},\alpha_{3}……\alpha_{2024}$とする

$(1-\displaystyle \frac{1}{\alpha_{1}})(1-\displaystyle \frac{1}{\alpha_{2}})……(1-\displaystyle \frac{1}{\alpha_{2024}})$の値を求めよ

出典:OnLineMath Contest
投稿日:2024.04.08

<関連動画>

茨城大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
茨城大学過去問題
$n \geqq 2$  整数
(x+1)(x+2)(x+3)・・・(x+n)
(1)$x^{n-1}$の係数
(2)$x^{n-2}$の係数
この動画を見る 

【高校数学】 数Ⅱ-43 剰余の定理と因数定理②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の式を因数分解しよう。

①$x^3-2x^3-x+2$

②$2x^3-7x^2+9$

③$2x^3-3x^2-11x+6$
この動画を見る 

弘前大 整式の剰余 微分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+3x^2+2x+7$を割り切り、かつすべての項の係数が正の実数であるような2次式は存在するか

出典:2017年弘前大学 過去問
この動画を見る 

20年5月数学検定準1級1次試験(複素数)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$\alpha=(-1+i)(1-\sqrt3 i)$

(1)$\vert \alpha \vert $を求めよ.
(2)$arg \alpha$を求めよ.
$0\leqq arg \alpha \lt 2\pi$

20年5月数学検定準1級1次試験(複素数)過去問
この動画を見る 

福田の数学〜名古屋大学2023年理系第1問〜4次方程式の解と共役な複素数の性質

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#名古屋大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数係数の4次方程式$x^4$$-px^3$$+qx^2$$-rx$$+s$=0 は相異なる複素数$\alpha$, $\bar{\alpha}$, $\beta$, $\bar{\beta}$を解に持ち、点1を中心とする半径1の円周上にあるとする。ただし、$\bar{\alpha}$, $\bar{\beta}$はそれぞれ $\alpha$, $\beta$と共役な複素数を表す。
(1)$\alpha$+$\bar{\alpha}$=$\alpha$$\bar{\alpha}$ を示せ。
(2)$t$=$\alpha$+$\bar{\alpha}$, $u$=$\beta$+$\bar{\beta}$とおく。p, q, r, sをそれぞれtとuで表せ。
(3)座標平面において、点(p, s)のとりうる範囲を図示せよ。

2023名古屋大学理系過去問
この動画を見る 
PAGE TOP