数学「大学入試良問集」【10−4 α+βとαβの軌跡】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【10−4 α+βとαβの軌跡】を宇宙一わかりやすく

問題文全文(内容文):
点$P(\alpha,\beta)$が$\alpha^2+\beta^2+\alpha\beta \lt 1$をみたして動くとき、点$Q(\alpha+\beta,\alpha\beta)$の動く範囲を図示せよ。
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
点$P(\alpha,\beta)$が$\alpha^2+\beta^2+\alpha\beta \lt 1$をみたして動くとき、点$Q(\alpha+\beta,\alpha\beta)$の動く範囲を図示せよ。
投稿日:2021.04.19

<関連動画>

大阪市立(医)微分 接線と交点

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-4x^3+4x^2+1$
点$P(t,f(t))$における接点が$f(x)$と点$P$以外の異なる2点で交わる$t$の範囲は?

出典:大阪市立大学 医学部医学科 過去問
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第2問〜三角不等式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}2\sin\theta+\sin2\theta+2\sin3\theta-2\sin2\theta\cos\theta \gt 0\hspace{10pt}(0 \lt \theta \lt \pi)$
を満たす$\theta$の範囲は
$0 \lt \theta \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ \pi,\ \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ \pi \lt \theta \lt \pi$
である。

2022早稲田大学人間科学部過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜領域(10)対称式の問題(その2)京都大学の問題に挑戦、高校2年生

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 実数$x,y$が条件$x^2+xy+y^2=6$ を満たしながら動くとき、
$x^2y+xy^2-x^2-2xy-y^2$$+x+y$
が取り得る値の範囲を求めよ。
この動画を見る 

対数方程式 京都産業大

アイキャッチ画像
単元: #対数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\log_{3} {(2x+1)}+\log_{3} {(x+1)}$=1
これの実数解を求めよ。

京都産業大過去問
この動画を見る 

高専数学 微積II #1(1)(2) 1次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$の$x=a$における一次近似式は
$f(a)+f`(a)(x-a)$
次の点における一次近似式を求めよ.

(1)$e^{2x}\cos x \ (x=0)$
(2)$\dfrac{1}{x} \ (x=1)$

この動画を見る 
PAGE TOP