福田の数学〜慶應義塾大学2021年看護医療学部第2問(2)〜外接する円に接する直線 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年看護医療学部第2問(2)〜外接する円に接する直線

問題文全文(内容文):
${\Large\boxed{2}}$(2)円$x^2+y^2=1$をCと表す。$p \gt 1$とし、点P(0,p)を通るCの2つの接線
を$l_1,l_2$とする。$l_1,l_2$の方程式は

$y=\boxed{\ \ タ\ \ }, y=\boxed{\ \ チ\ \ }$
であり、$l_1,l_2$が直交するのは$p=\boxed{\ \ ツ\ \ }$のときである。
$p=\boxed{\ \ ツ\ \ }$のとき、$l_1,l_2$を接線に持ち、かつCに外接する円の中で中心が
y軸上にある2つの円の半径は$\boxed{\ \ テ\ \ }$および$\boxed{\ \ ト\ \ }$である。

2021慶應義塾大学看護医療学部過去問
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(2)円$x^2+y^2=1$をCと表す。$p \gt 1$とし、点P(0,p)を通るCの2つの接線
を$l_1,l_2$とする。$l_1,l_2$の方程式は

$y=\boxed{\ \ タ\ \ }, y=\boxed{\ \ チ\ \ }$
であり、$l_1,l_2$が直交するのは$p=\boxed{\ \ ツ\ \ }$のときである。
$p=\boxed{\ \ ツ\ \ }$のとき、$l_1,l_2$を接線に持ち、かつCに外接する円の中で中心が
y軸上にある2つの円の半径は$\boxed{\ \ テ\ \ }$および$\boxed{\ \ ト\ \ }$である。

2021慶應義塾大学看護医療学部過去問
投稿日:2021.08.07

<関連動画>

福田の数学〜立教大学2024年理学部第1問(2)〜17のn乗の1の位

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$17^n$の1の位の数が1になる最小の自然数$n$は$\boxed{\ \ イ\ \ }$である。また、$17^{555}$の1の位の数を求めると、$\boxed{\ \ ウ\ \ }$である。
この動画を見る 

【高校数学】整数の割り算~商と余りについての理解~ 5-5【数学A】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
a,bは整数とする。aを5で割ると2余り、bを5で割ると4余る。
このとき、次の数を5で割ったときの余りを求めよ。

(1) a+b

(2) a-b

(3) ab
この動画を見る 

福田のおもしろ数学424〜直角二等辺三角形の斜辺を1:2:√3に内分する点がAと作る角が45°になる証明

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

直角二等辺三角形$ABC$で

斜辺$BC$を$1:2:\sqrt3$に

分ける点を順に$D,E$とする。

$\angle DAE=45°$

であることを証明せよ。

図は動画内参照
   
この動画を見る 

答えは0通り⁉️

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#場合の数#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
100円玉、50円玉、10円玉で3000面を支払うのは何通りか?

産業医科大過去問
この動画を見る 

北海道大 数1

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{x}$の小数部分が$\dfrac{x}{2}$に等しくなるような正の数$x$をすべて求めよ.
ただし,正の数$a$の部分とは,$a$を越えない最大の整数$n$との差$a-n$のことをいう.

北海道大過去問
この動画を見る 
PAGE TOP