福田の数学〜慶應義塾大学2021年看護医療学部第2問(2)〜外接する円に接する直線 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年看護医療学部第2問(2)〜外接する円に接する直線

問題文全文(内容文):
${\Large\boxed{2}}$(2)円$x^2+y^2=1$をCと表す。$p \gt 1$とし、点P(0,p)を通るCの2つの接線
を$l_1,l_2$とする。$l_1,l_2$の方程式は

$y=\boxed{\ \ タ\ \ }, y=\boxed{\ \ チ\ \ }$
であり、$l_1,l_2$が直交するのは$p=\boxed{\ \ ツ\ \ }$のときである。
$p=\boxed{\ \ ツ\ \ }$のとき、$l_1,l_2$を接線に持ち、かつCに外接する円の中で中心が
y軸上にある2つの円の半径は$\boxed{\ \ テ\ \ }$および$\boxed{\ \ ト\ \ }$である。

2021慶應義塾大学看護医療学部過去問
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(2)円$x^2+y^2=1$をCと表す。$p \gt 1$とし、点P(0,p)を通るCの2つの接線
を$l_1,l_2$とする。$l_1,l_2$の方程式は

$y=\boxed{\ \ タ\ \ }, y=\boxed{\ \ チ\ \ }$
であり、$l_1,l_2$が直交するのは$p=\boxed{\ \ ツ\ \ }$のときである。
$p=\boxed{\ \ ツ\ \ }$のとき、$l_1,l_2$を接線に持ち、かつCに外接する円の中で中心が
y軸上にある2つの円の半径は$\boxed{\ \ テ\ \ }$および$\boxed{\ \ ト\ \ }$である。

2021慶應義塾大学看護医療学部過去問
投稿日:2021.08.07

<関連動画>

素数になる2次式

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ n^2-54n+504$が素数となる自然数nをすべて求めよ.
この動画を見る 

海外数学オリンピック 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p^3+q^3-3pq+1$が素数となる自然数$(p,q)$の組をすべて求めよ.

海外数学オリンピック過去問
この動画を見る 

ユークリッドの互除法、死ぬほど覚えられない人へ。急ぎの人は【4:26まで】見て。(筆算の「形」を絵描き歌で覚えるのが一番早いし忘れない)【数学

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
ユークリッドの互除法についての解説動画です
767と921の最大公約数は?
この動画を見る 

整数問題!これ2通りで解けますか?【札幌医科大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#札幌医科大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数$n$に対して

$N=(n+2)^3-n(n+1)(n+2)$

が36の倍数になるような$n$をすべて求めよ。

札幌医科大過去問
この動画を見る 

15度75度90度の直角三角形の比は受験生は覚えた方が良い。また、導けますか?

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△ABC=?
*図は動画内参照
この動画を見る 
PAGE TOP