【高校数学】 数Ⅱ-109 2直線のなす角 - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-109 2直線のなす角

問題文全文(内容文):
交わる2直線$y=m,x+n,、y=m_2x+n_2$が垂直でないとき、そのなす鋭角を$\theta$とすると$\tan \theta=$①____

◎次の2直線のなす角$\theta$を求めよう。ただし、$0\lt \theta \lt \displaystyle \frac{π}{2}$とする。

②$y=-3x+5.y=2x$

③$y=\sqrt{ 3 }x,y=x-5$

④$\sqrt{ 3 }x-2y=4,3\sqrt{ 3 }x+y-2=0$
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
交わる2直線$y=m,x+n,、y=m_2x+n_2$が垂直でないとき、そのなす鋭角を$\theta$とすると$\tan \theta=$①____

◎次の2直線のなす角$\theta$を求めよう。ただし、$0\lt \theta \lt \displaystyle \frac{π}{2}$とする。

②$y=-3x+5.y=2x$

③$y=\sqrt{ 3 }x,y=x-5$

④$\sqrt{ 3 }x-2y=4,3\sqrt{ 3 }x+y-2=0$
投稿日:2015.08.26

<関連動画>

広島大 円の方程式 三角比 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
2つの円
$x^2+y^2+(2\sqrt2sinθ)x-\frac{\sqrt{17}}{2}y+sin^2θ+$
$\frac{17}{16}=0$
$x^2+y^2=\frac{9}{16} \quad (0^\circ < θ < 180^\circ)$
が共有点をもたないようなθの範囲を求めよ。
この動画を見る 

【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問5_三角関数 (※(*)式に訂正あり)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の整数とする。$\theta$の方程式$ \sin(a\theta)+\sqrt3\cos(a\theta)=1$ ・・・(*) がある。
(1)$\sin(\theta+\dfrac{\pi}{3}$)を$\sin\theta, \cos\theta$の式で表せ。
(2)$a=1$のとき、(*)を$0\leqq\theta\lt 2\pi$において表せ。
(3)(*)の$\theta\geqq 0$を満たすθのうち、小さい方から4つをaを用いて表せ。
(4)Nを正の整数とする。$0\leqq\lt 2\pi$において、(*)の解がちょうど2N個存在するようなaの値の範囲をNを用いて表せ。
この動画を見る 

放物線 光は1点に集る

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#三角関数#微分法と積分法#加法定理とその応用#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x$に$y$軸t平行に入った光はある一点を必ず通ることを示せ.
この動画を見る 

三角関数の合成とか大丈夫ですか?【数学 入試問題】【慶應義塾大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数
$y=2cos^2\theta-\sqrt3 cos\theta sin\theta-sin^2\theta (0≦\theta≦\pi)$
の最大値とその時の$\theta$を求めよ。

慶應義塾大過去問
この動画を見る 

格子点を通るということは?【山口大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
座標平面上で、$x$座標,$y$座標が共に整数である点を格子点という。
原点を通る2直線$l,m$がそれぞれ原点以外にも格子点を通るとき、
$l,m$のなす角は、$60°$にならないことを証明せよ。
ただし、$\sqrt3$が無理数であることを証明なしに用いても良い。

山口大過去問
この動画を見る 
PAGE TOP