福田の数学〜2直線のなす角はtanの加法定理〜慶應義塾大学2023年商学部第2問〜2直線のなす角と面積 - 質問解決D.B.(データベース)

福田の数学〜2直線のなす角はtanの加法定理〜慶應義塾大学2023年商学部第2問〜2直線のなす角と面積

問題文全文(内容文):
$a \gt 0,b \lt 0$とする。放物線C:$y=\dfrac{3}{2}x^2$上の点A(a,$\dfrac{3}{2}a^2$)と点B(b,$\dfrac{3}{2}b^2$)について、点Aと点Bにおける放物線の接線をそれぞれlとmで表し、その好転をPとする。
(1)lとmが直交するとき、交点Pのy座標は$-\dfrac{\fbox{ア}}{\fbox{イ}}$である。
(2)a=2で、$\angle APB=\dfrac{\pi}{4}$とする。このとき、bの値は$-\dfrac{\fbox{ウ}}{\fbox{エオ}}$である。
(3)b=-aで、$\angle APB=\dfrac{\pi}{3}$とする。この時、aの値は$\dfrac{\sqrt{\fbox{カ}}}{\fbox{キ}}$である。また、PAを半径、$\angle APB$を中心角として扇形PABが定まる。この扇形は放物線Cによって2つの図形に分割され、大きい図形の面積と小さい図形の面積の差は$\dfrac{\fbox{ク}}{\fbox{ケ}}\pi-\dfrac{\fbox{コ}\sqrt{\fbox{サ}}}{\fbox{シ}}$である。

2023慶應義塾大学商学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a \gt 0,b \lt 0$とする。放物線C:$y=\dfrac{3}{2}x^2$上の点A(a,$\dfrac{3}{2}a^2$)と点B(b,$\dfrac{3}{2}b^2$)について、点Aと点Bにおける放物線の接線をそれぞれlとmで表し、その好転をPとする。
(1)lとmが直交するとき、交点Pのy座標は$-\dfrac{\fbox{ア}}{\fbox{イ}}$である。
(2)a=2で、$\angle APB=\dfrac{\pi}{4}$とする。このとき、bの値は$-\dfrac{\fbox{ウ}}{\fbox{エオ}}$である。
(3)b=-aで、$\angle APB=\dfrac{\pi}{3}$とする。この時、aの値は$\dfrac{\sqrt{\fbox{カ}}}{\fbox{キ}}$である。また、PAを半径、$\angle APB$を中心角として扇形PABが定まる。この扇形は放物線Cによって2つの図形に分割され、大きい図形の面積と小さい図形の面積の差は$\dfrac{\fbox{ク}}{\fbox{ケ}}\pi-\dfrac{\fbox{コ}\sqrt{\fbox{サ}}}{\fbox{シ}}$である。

2023慶應義塾大学商学部過去問
投稿日:2023.11.27

<関連動画>

【高校数学】加法定理③~三角関数の合成~ 4-14【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【三角関数の合成】

a sinθ+b cosθ=$\sqrt{ \mathstrut a²+b² }$sin(θ+α)(=r sin(θ+α))
ただし、sinα=$\displaystyle \frac{b}{ \sqrt{a²+b²} }$,cos α=$\displaystyle \frac{a}{ \sqrt{a²+b²} }$,r=$\sqrt{ \mathstrut a²+b² }$である。

(1) 三角関数を合成せよ
sinθ+$\sqrt{ \mathstrut 3 }$cosθ

(2) 0≦x<2πのとき、次の方程式を解け
sin x-$\sqrt{ \mathstrut 3 }$cosx=1
この動画を見る 

難問です!三角関数と整数の融合問題!解けますか?【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形$ABC$において,$ tanA,tanB,tanC$の値がすべて整数であるとき,それらの値を求めよ。

一橋大過去問
この動画を見る 

【数Ⅱ】三角関数:関数y=sin²x-cos²x+2√3xsinxcosx(0≦x<2π)の最大値・最小値及び、そのときのxの値を求めよ。

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$y=\sin^2x-\cos^2x+2\sqrt3 x\sin x\cos x(0 \leqq x\lt 2\pi)$の最大値・最小値及び、そのときのxの値を求めよ。
この動画を見る 

【数Ⅱ】三角関数:加法定理の利用

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sinx - \siny =\dfrac{1}{2} , \cosx - \cosy =\dfrac{1}{3}$ , のとき、$\cos (x-y)$ の値を求めなさい。
この動画を見る 

【数Ⅱ】【三角関数】三角関数の合成6 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数 y=asinx+bcosxはx=$\frac{π}{6}$で最大値をとり, また, 最小値 -5である。定数a,bの値を求めよ。
この動画を見る 
PAGE TOP