18愛知県教員採用試験(数学:6番 指数関数) - 質問解決D.B.(データベース)

18愛知県教員採用試験(数学:6番 指数関数)

問題文全文(内容文):
6⃣$y=-(9^x+9^{-x})+2a(3^x+3^{-x})+1$
(1)$t=3^x+3^{-x}$の最小値
(2)yの最大値が5のときaの値
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
6⃣$y=-(9^x+9^{-x})+2a(3^x+3^{-x})+1$
(1)$t=3^x+3^{-x}$の最小値
(2)yの最大値が5のときaの値
投稿日:2020.09.15

<関連動画>

手を動かすだけの指数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 2^{x^2-3x}+2^{x-x^2}=2^{1-x}$
これを解け.
この動画を見る 

高校入試だけど指数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$10^{20}$は$50^{10}$の何倍か?

大妻嵐山高等学校
この動画を見る 

福田の入試問題解説〜東京大学2022年文系第2問〜3次関数の法施線とグラフとの交点

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$y=x^3-x$により定まる座標平面上の曲線をCとする。
C上の点P$(\alpha,\alpha^3-\alpha)$を通り、
点PにおけるCの接線と垂直に交わる直線をlとする。Cとlは相異なる3点で交わるとする。
(1)$\alpha$のとりうる値の範囲を求めよ。
(2)Cとlの点P以外の2つの交点のx座標を$\beta,\gamma$とする。ただし$\beta \lt \gamma$とする。
$\beta^2+\beta\gamma+\gamma^2-1\neq 0$ となることを示せ。
(3)(2)の$\beta,\gamma$を用いて、
$u=4\alpha^3+\frac{1}{\beta^2+\beta\gamma+\gamma^2-1}$
と定める。このとき、uの取りうる値の範囲を求めよ。

2022東京大学文系過去問
この動画を見る 

意外と簡単な指数の問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
意外と簡単な指数の問題
※問題文は動画内参照
この動画を見る 

大小比較の難問!どう解く?

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
e^πとπ^eの大小を比較せよ。
この動画を見る 
PAGE TOP