【高校数学】 数B-66 等比数列とその和② - 質問解決D.B.(データベース)

【高校数学】 数B-66 等比数列とその和②

問題文全文(内容文):
①初項3,公比-2の等比数列の第5項を求めよう.

②$4,k,k-1$が等比数列であるとき,$k$の値を求めよう.

③第3項が20,第6項が160である等比数列$\{a_n\}$の
一般項を求めよう.ただし,公比は実数とする.
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①初項3,公比-2の等比数列の第5項を求めよう.

②$4,k,k-1$が等比数列であるとき,$k$の値を求めよう.

③第3項が20,第6項が160である等比数列$\{a_n\}$の
一般項を求めよう.ただし,公比は実数とする.
投稿日:2016.01.30

<関連動画>

福田の数学〜慶應義塾大学2023年理工学部第3問〜確率と漸化式(難問)Part1

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 何も入っていない2つの袋A,Bがある。いま、「硬貨を1枚投げて表が出たら袋A、裏が出たら袋Bを選び、以下のルールに従って選んだ袋の中に玉を入れる」
という操作を繰り返す。
ルール
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より多いか、2つの袋の中に入っている玉の数が同じとき、選んだ袋の中に玉を1個入れる。
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より少ないとき、選んだ袋の中に入っている玉の数が、もう一方の袋の中に入っている玉の数と同じになるまで選んだ袋の中に玉をいれる。

たとえば、上の操作を3回行ったとき、硬貨が順に表、表、裏と出たとすると、
A,B2つの袋の中の玉の数は次のように変化する。
A:0個 B:0個 → A:1個 B:0個 → A:2個 B:0個 → A:2個 B:2個
(1)4回目の操作を終えたとき、袋Aの中に3個以上の玉が入っている確率は$\boxed{\ \ カ\ \ }$である。また、4回目の操作を終えた時点で袋Aの中に3個以上の玉が入っているという条件の下で、7回目の操作を終えたとき袋Bの中に入っている玉の数が3個以下である条件付き確率は$\boxed{\ \ キ\ \ }$である。
(2)$n$回目の操作を終えたとき、袋Aの中に入っている玉の数のほうが、袋Bの中に入っている玉の数より多い確率を$p_n$とする。
$p_{n+1}$を$p_n$を用いて表すと$p_{n+1}$=$\boxed{\ \ ク\ \ }$となり、これより$p_n$を$n$を用いて表すと$p_n$=$\boxed{\ \ ケ\ \ }$となる。
(3)$n$回目($n$≧4)の操作を終えたとき、袋Aの中に$n-1$個以上の玉が入っている確率は$\boxed{\ \ コ\ \ }$であり、$n-2$個以上の玉が入っている確率は$\boxed{\ \ サ\ \ }$である。
この動画を見る 

福田の数学〜千葉大学2023年第6問〜連立漸化式となる確率Part2

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ 1個のさいころを投げて出た目によって数直線上の点Pを動かすことを繰り返すゲームを考える。最初のPの位置を$a_0$=0とし、さいころを$n$回投げたあとのPの位置$a_n$を次のルールで定める。
・$a_{n-1}$=7 のとき、$a_n$=7
・$a_{n-1}$≠7 のとき、$n$回目に出た目$m$に応じて
$a_n$=$
\left\{\begin{array}{1}
a_{n-1}+m (a_{n-1}+m=1,3,4,5,6,7のとき)\\
1 (a_{n-1}+m=2,12のとき)\\
14-(a_{n-1}+m) (a_{n-1}+m=8,9,10,11のとき)\\
\end{array}\right.
$
(1)$a_2$=1 となる確率を求めよ。
(2)$n$≧1について、$a_n$=7 となる確率を求めよ。
(3)$n$≧3について、$a_n$=1 となる確率を求めよ。
この動画を見る 

佐賀大 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$a_1=1,a_{n+1}-2a_n-2n-3$

1987佐賀大過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第4問〜数列の文章題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$座標平面上でx座標とy座標がいずれも整数である点を格子点と呼ぶ。それぞれ
の正の整数nについて、4つの格子点$A_n(n,n),\ B_n(-n,n),\ C_n(-n,-n),\ D_n(n,-n)$
が作る正方形をJ_nとする。また、$(n-1,n)$にある格子点を$P_n$とする。
$\left\{a_k\right\}$を初項$a_1$が$-56$で、交差が$\frac{1}{4}$の等差数列とし、数列$\left\{a_k\right\}$の各項を以下の
ようにして格子点上順番に割り当てていく。
1.初項$a_1$は格子点$P_1$に割り当てる。
2.$a_l$が正方形$J_m$の周上にある格子点で$A_m$以外の点に割り当てられているときには、
$J_m$の周上でその点から半時計回り(右図(※動画参照)での矢印が示す方向)に一つ移動
した格子点に$a_{l+1}$を割り当てる。
3$.a_l$が格子点$A_m$に割り当てられているときには、$a_{l+1}$を格子点$P_{m+1}$に割り当てる。

全体としては、図に示されているようにして、格子点をたどっていくことになる。
(1)格子点$P_n$に割り当てられる数列$\left\{a_k\right\}$の項を$p_n$とし、格子点$C_n$に割り当て
られる数列$\left\{a_k\right\}$の項を$c_n$とする。
このとき、$p_4=-\boxed{\ \ アイ\ \ }, c_4=-\frac{\boxed{\ \ ウエオ\ \ }}{\boxed{\ \ カ\ \ }}$である。
(2)上で定めた$p_n$を用いて、$q_n$を数列$\left\{p_n\right\}$の初項$p_1$から第n項$p_n$までの和とする。
$q_n$をnを使って表すと、$q_n=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}n^3-\frac{\boxed{\ \ ケコサ\ \ }}{\boxed{\ \ シ\ \ }}n$である。
(3)上で定めた$q_n$が最小値を取るのは、$n=\boxed{\ \ ス\ \ }$または$n=\boxed{\ \ セ\ \ }$のときであり、
その値は#$-\boxed{\ \ ソタチ\ \ }$である。

2021慶應義塾大学商学部過去問
この動画を見る 

【数B】【数列】漸化式5 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列$\{a_n\}$の初項から第$n$項までの
和$S_n$が$S_n=2a_n-n$であるとき、
数列$\{a_n\}$の一般項を求めよ。
この動画を見る 
PAGE TOP