東海大(医)バーゼル問題を導く - 質問解決D.B.(データベース)

東海大(医)バーゼル問題を導く

問題文全文(内容文):
①$(\sqrt x+i)^7$の虚部は?
②$(\sqrt x+i)^7$が実数になる$x$を求めよ.
③②を満たす$x$の和を求めよ.
④$(\sqrt x+i)^{2n+1}$の虚部の$x$の$n$次と$(n-1)$次の係数を求めよ.
⑤$\displaystyle \sum_{k-1}^n \dfrac{1}{\tan^2\dfrac{k}{2n+1}\pi}$
⑥$0\lt \theta \lt \dfrac{\pi}{2}$なら$\sin\theta \lt \theta \lt \tan\theta$
$ \dfrac{1}{\tan^2\theta}\lt \dfrac{1}{\theta^2}\lt \dfrac{1}{\sin^2\theta}$である.
⑦$\displaystyle \sum_{k-1}^{\infty}\dfrac{1}{k^2}$を求めよ.

2018東海大(医)過去問
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$(\sqrt x+i)^7$の虚部は?
②$(\sqrt x+i)^7$が実数になる$x$を求めよ.
③②を満たす$x$の和を求めよ.
④$(\sqrt x+i)^{2n+1}$の虚部の$x$の$n$次と$(n-1)$次の係数を求めよ.
⑤$\displaystyle \sum_{k-1}^n \dfrac{1}{\tan^2\dfrac{k}{2n+1}\pi}$
⑥$0\lt \theta \lt \dfrac{\pi}{2}$なら$\sin\theta \lt \theta \lt \tan\theta$
$ \dfrac{1}{\tan^2\theta}\lt \dfrac{1}{\theta^2}\lt \dfrac{1}{\sin^2\theta}$である.
⑦$\displaystyle \sum_{k-1}^{\infty}\dfrac{1}{k^2}$を求めよ.

2018東海大(医)過去問
投稿日:2021.03.22

<関連動画>

#茨城大学2024#定積分_7#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} e^x(e^{2x}+\frac{1}{e^{2x}}) dx$

出典:2024年茨城大学
この動画を見る 

福田のわかった数学〜高校2年生020〜円の極線の公式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#図形と方程式#恒等式・等式・不等式の証明#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円の方程式
円$x^2+y^2=r^2$と円の内部の点$(a,b)$に対して
$ax+by=r^2$
はどんな直線を表すか説明せよ。
ただし、$(a,b)≠(0,0)$とする。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(12)共通接線、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=4$ $\cdots$①と$(x-4)^2+y^2=1$ $\cdots$②
の共通接線を全て求めよ。
この動画を見る 

福田の数学〜青山学院大学2025理工学部第4問〜折れ線の長さの和が4となる点の軌跡と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$xy$平面上に$2$つの定点$A(-1,0),B(1,0)$がある。

線分$AB$上の点$P$に対して、

$xy$平面上の点$Q$は以下の条件$(a),(b)$を

満たすとする。

$(a)$$P$と$Q$の$x$座標は等しく、

$Q$の$y$座標は正である。

$(b)$$AP+PQ+QB=4$

このとき、以下の問いに答えよ。

ただし、線分は両方の端点を含むものとする。

(1)$P$の座標を$(s,0)$とするとき、

$Q$の座標を$s$を用いて表せ。

(2)$P$が線分$AB$上を$A$から$B$まで動くとき、

$Q$の軌跡を$xy$平面上に図示せよ。

(3)$P$が線分$AB$上を$A$から$B$まで動くとき、

線分$PQ$が通過する範囲の面積を求めよ。

$2025$年青山学院大学理工学部過去問題
この動画を見る 

【高校数学】 数Ⅱ-114 三角関数を含む方程式・不等式⑦

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0 \leqq x \lt 2π$のとき、次の方程式を書こう。

①$2 \cos 2x+1=4\sin x$

②$\sin2x=\cos x$
この動画を見る 
PAGE TOP