福田のわかった数学〜高校2年生072〜三角関数(11)三角関数の最大最小 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生072〜三角関数(11)三角関数の最大最小

問題文全文(内容文):
数学$\textrm{II}$ 三角関数(11) 最大最小(1)
$y=3\cos x+4\sin x (0 \leqq x \leqq \frac{\pi}{2})$
(1)右辺を$\cos$で合成せよ。
(2)yの最大値、最小値を求めよ。
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(11) 最大最小(1)
$y=3\cos x+4\sin x (0 \leqq x \leqq \frac{\pi}{2})$
(1)右辺を$\cos$で合成せよ。
(2)yの最大値、最小値を求めよ。
投稿日:2021.10.31

<関連動画>

【高校数学】 数Ⅱ-117 和と積の公式②・和(差)→積編

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\sin A+\sin B=$①____________

$\cos A+\cos B=$②____________

$\sin A-\sin B=$③____________

$\cos A-\cos B=$④____________

◎次の値を求めよう。

⑤$\sin 105°+\sin 15°$

⑥$\cos 75°-\sin 15°$

⑦$\cos75°+\cos15°$
この動画を見る 

大学入試問題#562「証明問題じゃなきゃ解けるのか?」 東京帝国大学1937 #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n$:正の整数

$\displaystyle \int_{0}^{\pi} \displaystyle \frac{\sin(2n-1)x}{\sin\ x}\ dx=\pi$を示せ

出典:1937年東京帝国大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2021年理工学部第1問〜2直線のなす角の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $xy$平面上の曲線$y=x^3$を$C$とする。$C$上の2点$A(-1,-1), B(1,1)$をとる。
さらに、$C$上で原点$O$と$B$の間に動点$P(t,t^3)(0 \lt t \lt 1)$をとる。このとき、
以下の問いに答えよ。
(1)直線$AP$と$x$軸のなす角を$\alpha$とし、直線$PB$と$x$軸のなす角を$\beta$とするとき、
$\tan\alpha,\tan\beta$を$t$を用いて表せ。ただし、$0 \lt \alpha \lt \displaystyle \frac{\pi}{2},\ 0 \lt \beta \lt \displaystyle \frac{\pi}{2}$とする。

(2)$\tan\angle APB$を$t$を用いて表せ。

(3)$\angle APB$を最小にする$t$の値を求めよ。

2021早稲田大学理工学部過去問
この動画を見る 

【高校数学】一緒に解こう三角関数の合成 4-15【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 0≦x<2πのとき、次の方程式を解け。
  sin x-$\sqrt{3}$cos x=1


(2)次の関数の最大値と最小値、およびそのときのxの値を求めよ。
  y=sin x+cos x(0≦x≦2π)
この動画を見る 

【数学】4分で積和公式が馬鹿でもわかる考え方

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】4分で積和公式解説動画です
この動画を見る 
PAGE TOP